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3. DI, École normale supérieure, Paris

SimSL
ENS Cachan

October 14, 2015



Synchronous Block Diagram Languages: SCADE

I Widely used for critical control software development;

I E.g., avionic (Airbus, Ambraier, Comac, SAFRAN), trains (Ansaldo).



But modern systems need more



The Current Practice of Hybrid Systems Modeling

Embedded software interacts with physical devices.

The whole system has to be modeled: the controller and the plant.1

1Image by Esterel-Technologies/ANSYS.



Current Practice and Objective

Current Practice

I Simulink, Modelica used to model, rarely to implement critical soft.

I Software must be reimplemented in SCADE or imperative code.

I Interconnect tools (Simulink+Modelica+SCADE+Simplorer+...)

I Interchange format for co-simulation: S-functions, FMU/FMI

Objective and Approach

I Increase the confidence in what is simulated

I Use SCADE both to simulate and implement

I Synchronous code for both the controller and the plant

I Reuse the existing compiler infrastructure

I Run with an off-the-shelf numerical solver (e.g., SUNDIALS)



Strange beasts. . .



Typing issue 1: Mixing continuous & discrete components
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I The shape of cpt depends on the steps chosen by the solver.
I Putting another component in parallel can change the result.
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Typing issue 2: Boolean guards in continuous automata
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How long is a discrete step?

I Adding a parallel component changes the result.

I No warning by the compiler.

I The manual says: “A single transition is taken per major step”.

Discrete time is not logical: it is that of the simulation engine.



Causality issue: the Simulink state port
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The output of the state port is the same as the output of the
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state port is the value that would have appeared at the block’s
standard output if the block had not been reset.
–Simulink Reference (2-685)
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Excerpt of C code produced by RTW (release R2009)
static void mdlOutputs(SimStruct * S, int_T tid)

{ _rtX = (ssGetContStates(S));

...

_rtB = (_ssGetBlockIO(S));

_rtB->B_0_0_0 = _rtX->Integrator1_CSTATE + _rtP->P_0;

_rtB->B_0_1_0 = _rtP->P_1 * _rtX->Integrator1_CSTATE;

if (ssIsMajorTimeStep (S))

{ ...

if (zcEvent || ...)

{ (ssGetContStates (S))->Integrator0_CSTATE =

_ssGetBlockIO (S))->B_0_1_0;

}

...

(_ssGetBlockIO (S))->B_0_2_0 =

(ssGetContStates (S))->Integrator0_CSTATE;

_rtB->B_0_3_0 = _rtP->P_2 * _rtX->Integrator0_CSTATE;

if (ssIsMajorTimeStep (S))

{ ...

if (zcEvent || ...)

{ (ssGetContStates (S))-> Integrator1_CSTATE =

(ssGetBlockIO (S))->B_0_3_0;

}

... } ... }

x = −3 · last y

Before assignment:
integrator state con-
tains ‘last’ value

After assignment: integrator
state contains the new value

y = −4 · x
So, y is updated with the new value of x

There is a problem in the treatment of causality.



Causality: Modelica example

model scheduling
Real x(start = 0);
Real y(start = 0);

equation

der(x) = 1;
der(y) = x;

when x >= 2 then
reinit(x, −3 ∗ y)

end when;
when x >= 2 then

reinit(y, −4 ∗ x);
end when;

end scheduling;

OpenModelica 1.9.2beta1 (r24372)
Also in Dymola
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Hybrid System Modelers

Simulink / FMI Simplorer / Modelica

Ordinary differential equation Differential algebraic equation

ẏ = f (y , t) f (y , ẏ , t) = 0

Explicit Implicit

Causal Acausal



Hybrid System Modelers

Simulink / FMI / Zélus / Scade Hybrid Simplorer / Modelica

Ordinary differential equation Differential algebraic equation

ẏ = f (y , t) f (y , ẏ , t) = 0

Explicit Implicit

Causal Acausal



Background: [Benveniste et al., 2010 - 2014]

“Build a hybrid modeler on synchronous language principles”

Milestones

I Do as if time was global and discrete [JCSS’12]

I Lustre with ODEs [LCTES’11]

I Hierarchical automata, both discrete and hybrid [EMSOFT’11]

I Causality analysis [HSCC’14]

This was experimented in the language Zélus [HCSS’13]

The validation on an industrial compiler remained to be done.

SCADE Hybrid (summer 2014)

I Prototype based on KCG 6.4 (now KCG 6.5 - 2015)

I SCADE Hybrid = full SCADE + ODEs

I Generates FMI 1.0 model-exchange FMUs with Simplorer



In the sequel, we give examples in the concrete syntax of Zélus.
Examples in SCADE Hybrid and generated C code at:

zelus.di.ens.fr/cc2015

zelus.di.ens.fr/cc2015


Synchronous languages in a slide

I Compose stream functions; basic values are streams.

I Operation apply pointwise + unit delay (fby) + automata.

(∗ computes [x(n) + y(n) + 1] at every instant [n] ∗)
fun add (x,y) = x + y + 1

(∗ returns [true] when the number of [t] has reached [bound] ∗)
node after (bound, t) = (c = bound) where

rec c = 0 fby (min(tick, bound))
and tick = if t then c + 1 else c

The counter can be instantiated twice in a two state automaton,

node blink (n, m, t) = x where
automaton
| On → do x = true until (after(n, t)) then Off
| Off → do x = false until (after(m, t)) then On

From it, a synchronous compiler produces sequential loop-free code
that compute a single step of the system.



A Simple Hybrid System

Yet, time was discrete. Now, a simple heat controller. 2

(∗ a model of the heater defined by an ODE with two modes ∗)
hybrid heater(active) = temp where

rec der temp = if active then c −. k ∗. temp else −. k ∗. temp init temp0

(∗ an hysteresis controller for a heater ∗)
hybrid hysteresis controller(temp) = active where

rec automaton
| Idle → do active = false until (up(t min −. temp)) then Active
| Active → do active = true until (up(temp −. t max)) then Idle

(∗ The controller and the plant are put parallel ∗)
hybrid main() = temp where

rec active = hysteresis controller(temp)
and temp = heater(active)

Three syntactic novelties: keyword hybrid, der and up.

2Hybrid version of N. Halbwachs’s example in Lustre at Collège de France, Jan.10.



From Discrete to Hybrid

The type language [LCTES’11]

bt ::= float | int | bool | zero | · · ·
σ ::= bt × ...× bt

k−→ bt × ...× bt
k ::= D | C | A A

D C

Function Definition: fun f(x1,...) = (y1,...)

I Combinatorial functions (A); usable anywhere.

Node Definition: node f(x1,...) = (y1,...)

I Discrete-time constructs (D) of SCADE/Lustre: pre, ->, fby.

Hybrid Definition: hybrid f(x1,...) = (y1,...)

I Continuous-time constructs (C): der x = ..., up, down, etc.



Mixing continuous/discrete parts

Zero-crossing events

I They correspond to event indicators/state events in FMI

I Detected by the solver when a given signal crosses zero

Design choices

I A discrete computation can only be triggered by a zero-crossing

I Discrete state only changes at a zero-crossing event

I A continuous state can be reset at a zero-crossing event



Example

node counter() = cpt where
rec cpt = 1 → pre cpt + 1

hybrid hybrid counter() = cpt where
rec cpt = present up(z) → counter() init 0
and z = sinus()

Output with SCADE Hybrid + Simplorer



How to communicate between continuous and discrete
time?

E.g., the bouncing ball

hybrid ball(y0) = y where
rec der y = y v init y0
and der y v = −. g init 0.0 reset z → 0.8 ∗. last y v
and z = up(−. y)

I Replacing last y v by y v would lead to a deadlock.

I In SCADE and Zélus, last y v is the previous value of y v.

I It coincides with the left limit of y v when y v is left continuous.



Internals



The Simulation Engine of Hybrid Systems

Alternate discrete steps and integration steps

D C
reaction

[reinitialize]

zero-crossing event
integrate

σ′, y ′ = nextσ(t, y) upz = gσ(t, y) ẏ = fσ(t, y)

Properties of the three functions

I nextσ gathers all discrete changes.

I gσ defines signals for zero-crossing detection.

I fσ is the function to integrate.



Compilation

The Compiler has to produce:

1. Inititialization function init to define y(0) and σ(0).

2. Functions f and g .

3. Function next.

The Runtime System

1. Program the simulation loop, using a black-box solver (e.g.,
SUNDIALS CVODE);

2. Or rely on an existing infrastructure.

Zélus follows (1); SCADE Hybrid follows (2), targetting Simplorer FMIs.



Compiler Architecture

Two implementations: Zélus and KCG 6.4 (Release 2014) of SCADE.

KCG 6.4 of SCADE

I Generates FMI 1.0 model-exchange FMUs for Simplorer.
I Only 5% of the compiler modified. Small changes in:

I static analysis (typing, causality).
I automata translation; code generation.
I FMU generation (XML description, wrapper).

I FMU integration loop: about 1000 LoC.

parsing typing causality
control

encoding
optimization

scheduling
SOL

generation
slicingdeadcode

removal

C code
generation



A SCADE-like Input Language

Essentially SCADE with three syntax extensions (in red).

d ::= const x = e | k f (pi) = pi whereE | d ; d

k ::= fun | node | hybrid

e ::= x | v | op(e, ..., e) | v fby e | last x | f (e, ..., e) | up(e)

p ::= x | (x , ..., x)

pi ::= xi | xi , ..., xi

xi ::= x | x last e | x default e

E ::= p = e | der x = e
| if e thenE elseE
| reset E every e
| local pi in E | do E and . . .E done



A Clocked Data-flow Internal Language

The internal language is extended with three extra operations.
Translation based on Colaco et al. [EMSOFT’05].

d ::= const x = c | k f (p) = a whereC | d ; d

k ::= fun | node | hybrid

C ::= (xi = ai )xi∈I with ∀i 6= j .xi 6= xj

a ::= eck

e ::= x | v | op(a, ..., a) | v fby a | pre(a)
| f (a, ..., a)
| merge(a, a, a) | a when a
| integr(a, a) | up(a)

p ::= x | (x , ..., x)

ck ::= base | ck on a



Clocked Equations Put in Normal Form
Name the result of every stateful operation. Separate into syntactic
categories.

I se: strict expressions

I de: delayed expressions

I ce: controlled expressions.

Equation lx = integr(x ′, x) defines lx to be the continuous state
variable; possibly reset with x .

eq ::= x = ceck | x = f (sa, ..., sa)ck | x = deck

sa ::= seck

ca ::= ceck

se ::= x | v | op(sa, ..., sa) | sa when sa

ce ::= se | merge(sa, ca, ca) | ca when sa

de ::= pre(ca) | v fby ca | integr(ca, ca) | up(ca)



Well Scheduled Form

Equations are statically scheduled.

Read(a): set of variables read by a.

Given C = (xi = ai )xi∈I , a valid schedule is a one-to-one function

Schedule(.) : I → {1 . . . |I |}

such that, for all xi ∈ I , xj ∈ Read(ai ) ∩ I :

1. if ai is strict, Schedule(xj) < Schedule(xi ) and

2. if ai is delayed, Schedule(xi ) ≤ Schedule(xj).

From the data-dependence point-of-view, integr(ca1, ca2) and up(ca)
break instantaneous loops.



A Sequential Object Language (SOL)
I Translation into an intermediate imperative language [Colaco et al.,

LCTES’08]
I Instead of producing two methods step and reset, produce more.
I Mark memory variables with a kind m

md ::= | const x = c
| const f = class〈M, I , (method i (pi ) = ei whereSi )i∈[1..n]〉

M ::= [x : m[= v ]; ...; x : m[= v ]]

I ::= [o : f ; ...; o : f ]

m ::= Discrete | Zero | Cont

e ::= v | lv | op(e, ..., e) | o.method(e, ..., e)

S ::= () | lv ← e | S ; S | var x , ..., x in S | if c thenS elseS

R, L ::= S ; ...; S

lv ::= x | lv .field | state (x)



State Variables

Discrete State Variables (sort Discrete)

I Read with state (x);

I modified with state (x)← c

Zero-crossing State Variables (sort Zero)

I A pair with two fields.

I The field state (x).zin is a boolean, true when a zero-crossing on x
has been detected, false otherwise.

I The field state (x).zout is the value for which a zero-crossing must
be detected.

Continuous State Variables (sort Cont)

I state (x).der is its instantaneous derivative;

I state (x).pos its value



Example: translation of the bouncing ball

let bouncing = machine(continuous) {

memories disc init_25 : bool = true;

zero result_17 : bool = false;

cont y_v_15 : float = 0.; cont y_14 : float = 0.

method reset =

init_25 <- true; y_v_15.pos <- 0.

method step time_23 y0_9 =

(if init_25 then (y_14.pos <- y0_9; ()) else ());

init_25 <- false;

result_17.zout <- (~-.) y_14.pos;

if result_17.zin

then (y_v_15.pos <- ( *. ) 0.8 y_v_15.pos);

y_14.der <- y_v_15.pos;

y_v_15.der <- (~-.) g; y_14.pos }



Finally

1. Translate as usual to produce a function step.

2. For hybrid nodes, copy-and-paste the step method.

3. Either into a cont method activated during the continuous mode, or
two extra methods derivatives and crossings.

4. Apply the following:
I During the continuous mode (method cont), all zero-crossings

(variables of type zero, e.g., state (x).zin) are surely false. All
zero-crossing outputs (state (x).zout ← ...) are useless.

I During the discrete step (method step), all derivative changes
(state (x).der ← ...) are useless.

I Remove dead-code by calling an existing pass.

5. That’s all!

Examples (both Zélus and SCADE) at: zelus.di.ens.fr/cc2015

zelus.di.ens.fr/cc2015
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Conclusion

Two full scale experiments

I The Zélus academic langage and compiler.

I The industrial KCG 6.5 (Release 2015) code generator of SCADE.

I For KCG, less than 5% of extra LOC, in all.

I The extension is fully conservative w.r.t existing SCADE.

I The very same code is used both for simulation and embedded code.

Lessons

I The existing compiler architecture of SCADE KCG, based on
successive rewritting, helped a lot.

I The discipline to make the extension compatible with existing
compile-time checks and semantics helped a lot.

I Is-it helful for identifying a safe subset of Simulink?



http://zelus.di.ens.fr

http://zelus.di.ens.fr
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