High Dimensional Switched Systems: Control and Observation

Adrien Le Coënt ¹, Florian De Vuyst ¹, Christian Rey ², Ludovic Chamoin ², Laurent Fribourg ³, Mario Sigalotti⁴

October 14, 2015

¹CMLA Centre de Mathématiques et de Leurs Applications

²LMT-Cachan Laboratoire de Mécanique et Technologie

³LSV Laboratoire de Spécification et Vérification

⁴CMAP Centre de Mathématiques Appliquées A. Le Coënt, F. de Vuyst, L. Fribourg

Introduction

Framework

- Goal: control the evolution of an operating system with the help of actuators and sensors
- Framework of the switched control systems: one selects the working modes of the system over time, every mode is described by differential equations (ODEs or PDEs)
- Application to medium/high dimensional systems:
 - Model Order Reduction
 - Error bounding
 - State space bisection

Outline

- 1 Switched Systems
- 2 State Space Decomposition
- 3 Control of high dimensional switched systems
- 4 Observation of high dimensional switched systems

Outline

- 1 Switched Systems
- 2 State Space Decomposition
- 3 Control of high dimensional switched systems
- 4 Observation of high dimensional switched systems

A switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t))$$

A switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t))$$

is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

 \blacksquare state $x \in \mathbb{R}^n$

A switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t))$$

- \blacksquare state $x \in \mathbb{R}^n$
- switching signal $\sigma:[0,\infty)\to U$

A switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t))$$

- state $x \in \mathbb{R}^n$
- switching signal $\sigma:[0,\infty)\to U$
- $U = \{1, \dots, N\}$ finite set of modes associated with the dynamics

$$\dot{x} = f_u(x)$$

A switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t))$$

- state $x \in \mathbb{R}^n$
- switching signal $\sigma:[0,\infty)\to U$
- $U = \{1, ..., N\}$ finite set of modes associated with the dynamics

$$\dot{x} = Ax + Bu$$

A switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t))$$

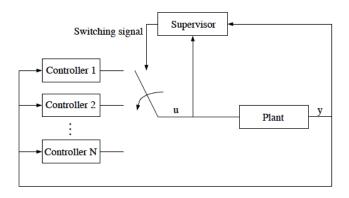
is a family of continuous-time dynamical systems with a rule σ that determines at each time which one is active

- state $x \in \mathbb{R}^n$
- switching signal $\sigma:[0,\infty)\to U$
- $U = \{1, \dots, N\}$ finite set of modes associated with the dynamics

$$\dot{x} = Ax + Bu$$

We focus here on sampled switched systems: switching instants occur periodically every τ ($\rightsquigarrow \sigma$ is constant on $[i\tau, (i+1)\tau)$)

Controlled Switched Systems: Schematic View



We consider the state-dependent control problem of synthesizing σ :

We consider the state-dependent control problem of synthesizing σ :

At each τ , find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

We consider the state-dependent control problem of synthesizing σ :

At each τ , find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

■ stability (x should converge to and stay in the neighborhood R of a reference point Ω)

We consider the state-dependent control problem of synthesizing σ :

At each τ , find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

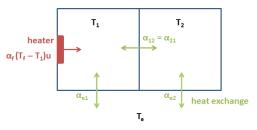
- stability (x should converge to and stay in the neighborhood R of a reference point Ω)
- \blacksquare safety (x should never exit from a safe zone S)

We consider the state-dependent control problem of synthesizing σ :

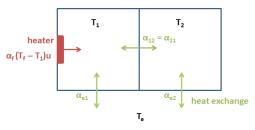
At each τ , find the appropriate switched mode $u \in U$ according to the current value of x, in order to achieve some objectives:

- stability (x should converge to and stay in the neighborhood R of a reference point Ω)
- \blacksquare safety (x should never exit from a safe zone S)

 $\underline{\rm NB} :$ classic stabilization impossible here (no common equilibrium pt) \leadsto practical stability

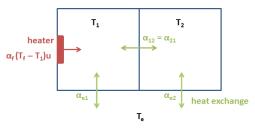


$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f u & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f u \\ \alpha_{e2} T_e \end{pmatrix}.$$



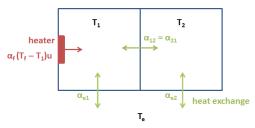
$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f u & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f u \\ \alpha_{e2} T_e \end{pmatrix}.$$

■ Modes: u = 0, 1; sampling period τ



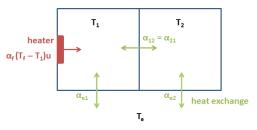
$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f u & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f u \\ \alpha_{e2} T_e \end{pmatrix}.$$

- Modes: u = 0, 1; sampling period τ
- A pattern π is a finite sequence of modes (e.g. $(1 \cdot 0 \cdot 0 \cdot 0)$)



$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f u & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f u \\ \alpha_{e2} T_e \end{pmatrix}.$$

- Modes: u = 0, 1; sampling period τ
- A pattern π is a finite sequence of modes (e.g. $(1 \cdot 0 \cdot 0 \cdot 0)$)
- A state dependent control consists in selecting at each τ a mode (or a pattern) according to the current value of the state.



$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f u & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f u \\ \alpha_{e2} T_e \end{pmatrix}.$$

- Modes: u = 0, 1; sampling period τ
- A pattern π is a finite sequence of modes (e.g. $(1 \cdot 0 \cdot 0 \cdot 0)$)
- A state dependent control consists in selecting at each τ a mode (or a pattern) according to the current value of the state.

<u>NB</u>: Each mode has its basic proper equilibrium point; by appropriate switching, one can drive the system to a specific stability zone

Safety and Stability Properties for the two-room apartment

Safety and Stability Properties for the two-room apartment

■ Example of safety property to be checked: satisfactory temperature

$$\forall t \geq 0: \quad T_{min} \leq T_i(t) \leq T_{max}$$

Safety and Stability Properties for the two-room apartment

■ Example of safety property to be checked: satisfactory temperature

$$\forall t \geq 0: T_{min} \leq T_i(t) \leq T_{max}$$

■ Example of stability property to be checked: temperature regulation

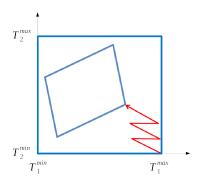
$$|T_i(t) - T_{reference}| \le \varepsilon \text{ as } t \to \infty$$

Outline

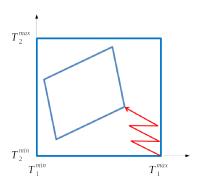
- 1 Switched Systems
- 2 State Space Decomposition
- 3 Control of high dimensional switched systems
- 4 Observation of high dimensional switched systems

Given a zone R (selected around a reference point Ω of the state-space)

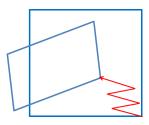
■ Look for a *pattern* which maps R into R



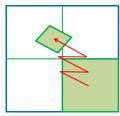
- Look for a pattern which maps R into R
- If such a pattern exists, then uniform control over the whole R



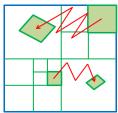
- Look for a pattern which maps R into R
- If such a pattern exists, then uniform control over the whole R
- Otherwise,



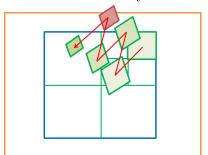
- Look for a pattern which maps R into R
- If such a pattern exists, then uniform control over the whole R
- Otherwise, bisect of R into subparts, and search for patterns mapping these subparts into R

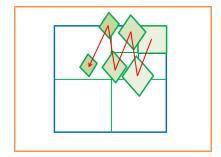


- Look for a pattern which maps R into R
- If such a pattern exists, then uniform control over the whole R
- Otherwise, bisect of R into subparts, and search for patterns mapping these subparts into R
- In case of failure, iterate the bisection

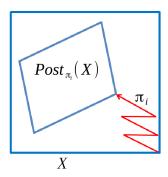


- Look for a pattern which maps R into R
- If such a pattern exists, then uniform control over the whole R
- Otherwise, bisect of R into subparts, and search for patterns mapping these subparts into R
- In case of failure, iterate the bisection
- **Extension** for safety: the unfolding must stay in the safety set S.





Post Set Operators



definition

A decomposition Δ of R is a set of couples $\{(V_i, \pi_i)\}_{i \in I}$ such that:

definition

A decomposition Δ of R is a set of couples $\{(V_i, \pi_i)\}_{i \in I}$ such that:

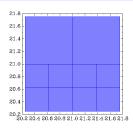
definition

A decomposition Δ of R is a set of couples $\{(V_i, \pi_i)\}_{i \in I}$ such that:

- $\blacksquare \forall i \in I \ Post_{\pi_i}(V_i) \subseteq R$

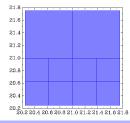
- $\blacksquare \forall i \in I \ Post_{\pi_i}(V_i) \subseteq R$
- (Extension for safety: and $\forall i \in I \ Unf_{\pi_i}(V_i) \subseteq S$).

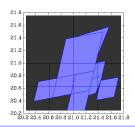
- $\blacksquare \forall i \in I \ Post_{\pi_i}(V_i) \subseteq R$
- (Extension for safety: and $\forall i \in I \ Unf_{\pi_i}(V_i) \subseteq S$).



A decomposition Δ of R is a set of couples $\{(V_i, \pi_i)\}_{i \in I}$ such that:

- $\blacksquare \forall i \in I \ Post_{\pi_i}(V_i) \subseteq R$
- (Extension for safety: and $\forall i \in I \ Unf_{\pi_i}(V_i) \subseteq S$).



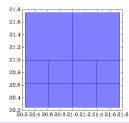


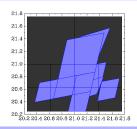
definition and property

Let
$$Post_{\Delta}(X) =_{def} \bigcup_{i \in I} Post_{\pi_i}(X \cap V_i)$$
.

A decomposition Δ of R is a set of couples $\{(V_i, \pi_i)\}_{i \in I}$ such that:

- $\blacksquare \forall i \in I \ Post_{\pi_i}(V_i) \subseteq R$
- (Extension for safety: and $\forall i \in I \ Unf_{\pi_i}(V_i) \subseteq S$).





definition and property

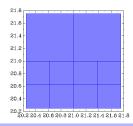
Let $Post_{\Delta}(X) =_{def} \bigcup_{i \in I} Post_{\pi_i}(X \cap V_i)$. We have:

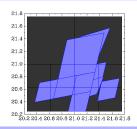
$$Post_{\Delta}(R) \subseteq R$$

A decomposition Δ of R is a set of couples $\{(V_i, \pi_i)\}_{i \in I}$ such that:

$$\blacksquare \forall i \in I \ Post_{\pi_i}(V_i) \subseteq R$$

■ (Extension for safety: and $\forall i \in I \ Unf_{\pi_i}(V_i) \subseteq S$).





definition and property

Let $Post_{\Delta}(X) =_{def} \bigcup_{i \in I} Post_{\pi_i}(X \cap V_i)$. We have:

$$Post_{\Lambda}(R) \subseteq R \quad (\text{and} \quad Unf_{\Lambda}(R) \subseteq S)$$

The decomposition $\Delta = \{(V_i, \pi_i)\}_{i \in I}$ induces a natural control:

The decomposition $\Delta = \{(V_i, \pi_i)\}_{i \in I}$ induces a natural control:

1 $x(t) \in R$, therefore $\exists i \in I$ such that $x(t) \in V_i$

The decomposition $\Delta = \{(V_i, \pi_i)\}_{i \in I}$ induces a natural control:

- **1** $x(t) \in R$, therefore $\exists i \in I$ such that $x(t) \in V_i$
- **2** Apply pattern π_i to x(t)

The decomposition $\Delta = \{(V_i, \pi_i)\}_{i \in I}$ induces a natural control:

- **1** $x(t) \in R$, therefore $\exists i \in I$ such that $x(t) \in V_i$
- **2** Apply pattern π_i to x(t)
- 3 At the end of π_i , $x(t') \in R$, iterate by going back to step (1)

The decomposition $\Delta = \{(V_i, \pi_i)\}_{i \in I}$ induces a natural control:

- \mathbf{I} $x(t) \in R$, therefore $\exists i \in I$ such that $x(t) \in V_i$
- **2** Apply pattern π_i to x(t)
- 3 At the end of π_i , $x(t') \in R$, iterate by going back to step (1)

Property

Under the Δ -control,

■ any trajectory $x_0 \to_{\pi_{i_1}} x_1 \to_{\pi_{i_2}} x_2 \to_{\pi_{i_3}} \cdots$ always stays in R

The decomposition $\Delta = \{(V_i, \pi_i)\}_{i \in I}$ induces a natural control:

- \mathbf{I} $x(t) \in R$, therefore $\exists i \in I$ such that $x(t) \in V_i$
- **2** Apply pattern π_i to x(t)
- 3 At the end of π_i , $x(t') \in R$, iterate by going back to step (1)

Property

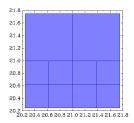
Under the Δ -control,

- any trajectory $x_0 \to_{\pi_{i_1}} x_1 \to_{\pi_{i_2}} x_2 \to_{\pi_{i_3}} \cdots$ always stays in R
- The unfolding of the trajectory always stays in S

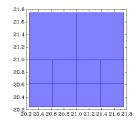
For: $\alpha_{12} = 5 \times 10^{-2}$, $\alpha_{21} = 5 \times 10^{-2}$, $\alpha_{e1} = 5 \times 10^{-3}$, $\alpha_{e2} = 3.3 \times 10^{-3}$, $\alpha_f = 8.3 \times 10^{-3}$, $T_e = 10$, $T_f = 50$ and $\tau = 5$.

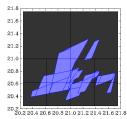
For:
$$\alpha_{12} = 5 \times 10^{-2}$$
, $\alpha_{21} = 5 \times 10^{-2}$, $\alpha_{e1} = 5 \times 10^{-3}$, $\alpha_{e2} = 3.3 \times 10^{-3}$, $\alpha_f = 8.3 \times 10^{-3}$, $T_e = 10$, $T_f = 50$ and $\tau = 5$. $\Omega = (21, 21)$, $T_f = [20.25, 21.75]$, $T_f = [20.25, 21.7$

For:
$$\alpha_{12} = 5 \times 10^{-2}$$
, $\alpha_{21} = 5 \times 10^{-2}$, $\alpha_{e1} = 5 \times 10^{-3}$, $\alpha_{e2} = 3.3 \times 10^{-3}$, $\alpha_f = 8.3 \times 10^{-3}$, $T_e = 10$, $T_f = 50$ and $\tau = 5$. $\Omega = (21, 21)$, $T_e = [20.25, 21.75] \times [20.25, 21.75]$, $T_e = [20.25, 21.75] \times [20.25, 21.75]$

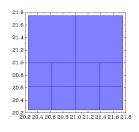


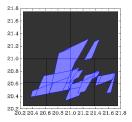
For:
$$\alpha_{12} = 5 \times 10^{-2}$$
, $\alpha_{21} = 5 \times 10^{-2}$, $\alpha_{e1} = 5 \times 10^{-3}$, $\alpha_{e2} = 3.3 \times 10^{-3}$, $\alpha_f = 8.3 \times 10^{-3}$, $T_e = 10$, $T_f = 50$ and $\tau = 5$. $\Omega = (21, 21)$, $R = [20.25, 21.75] \times [20.25, 21.75]$, $S = [20, 22] \times [20, 22]$

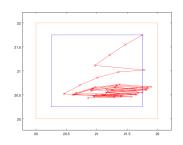




For:
$$\alpha_{12} = 5 \times 10^{-2}$$
, $\alpha_{21} = 5 \times 10^{-2}$, $\alpha_{e1} = 5 \times 10^{-3}$, $\alpha_{e2} = 3.3 \times 10^{-3}$, $\alpha_f = 8.3 \times 10^{-3}$, $T_e = 10$, $T_f = 50$ and $\tau = 5$. $\Omega = (21, 21)$, $T_e = [20.25, 21.75] \times [20.25, 21.75]$, $T_e = [20.25, 22] \times [20, 22]$







For:
$$\alpha_{12} = 5 \times 10^{-2}$$
, $\alpha_{21} = 5 \times 10^{-2}$, $\alpha_{e1} = 5 \times 10^{-3}$, $\alpha_{e2} = 3.3 \times 10^{-3}$, $\alpha_f = 8.3 \times 10^{-3}$, $T_e = 10$, $T_f = 50$ and $\tau = 5$. $\Omega = (21, 21)$, $R = [20.25, 21.75] \times [20.25, 21.75]$, $S = [20, 22] \times [20, 22]$

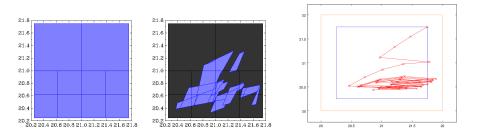


Figure : Decomposition (left) ; unfolding (middle) ; unfolded trajectory (right) in plane (T_1, T_2)

For:
$$\alpha_{12} = 5 \times 10^{-2}, \alpha_{21} = 5 \times 10^{-2}, \alpha_{e1} = 5 \times 10^{-3}, \alpha_{e2} = 3.3 \times 10^{-3}, \alpha_f = 8.3 \times 10^{-3}, T_e = 10, T_f = 50 \text{ and } \tau = 5.$$

 $\Omega = (21, 21), R = [20.25, 21.75] \times [20.25, 21.75], S = [20, 22] \times [20, 22]$

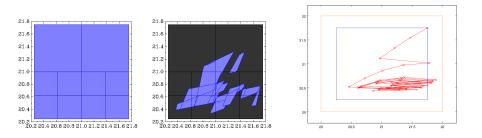


Figure : Decomposition (left) ; unfolding (middle) ; unfolded trajectory (right) in plane (T_1, T_2)

Decomposition found for k = 4, d = 3.

■ Described by the differential equation:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

Described by the differential equation:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$: output
- $u \in \mathbb{R}^p$: control input, takes a finite number of values (modes)
- \blacksquare A,B,C: matrices of appropriate dimensions

Described by the differential equation:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$: output
- $u \in \mathbb{R}^p$: control input, takes a finite number of values (modes)
- \blacksquare A,B,C: matrices of appropriate dimensions
- Idea: impose the right u(t) such that x and y verify some properties (stability, reachability...)

■ Described by the differential equation:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$: output
- $u \in \mathbb{R}^p$: control input, takes a finite number of values (modes)
- \blacksquare A,B,C: matrices of appropriate dimensions
- Idea: impose the right u(t) such that x and y verify some properties (stability, reachability...)
- Objectives:
 - I x-stabilization: make all the state trajectories starting in a compact interest set $R_x \subset \mathbb{R}^n$ return to R_x ;
 - 2 y-convergence: send the output of all the trajectories starting in R_x into an objective set $R_y \subset \mathbb{R}^m$;

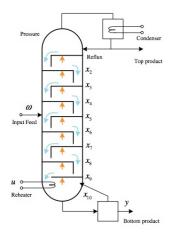
■ Described by the differential equation:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

- $x \in \mathbb{R}^n$: state variable
- $y \in \mathbb{R}^m$: output
- $u \in \mathbb{R}^p$: control input, takes a finite number of values (modes)
- \blacksquare A,B,C: matrices of appropriate dimensions
- Idea: impose the right u(t) such that x and y verify some properties (stability, reachability...)
- Objectives:
 - I x-stabilization: make all the state trajectories starting in a compact interest set $R_x \subset \mathbb{R}^n$ return to R_x ;
 - 2 y-convergence: send the output of all the trajectories starting in R_x into an objective set $R_y \subset \mathbb{R}^m$;
- \blacksquare Constraint: x of "high" dimension.

A Sampled Switched System with Output

A distillation column



definition

definition

definition

- $\forall i \in I \ Post_{Pat_i}(V_i) \subseteq R_x \ (x\text{-stabilization})$

definition

- $\forall i \in I \ Post_{Pat_i}(V_i) \subseteq R_x \ (x\text{-stabilization})$
- $\forall i \in I \ Post_{Pat_i,C}(V_i) \subseteq R_y \ (y\text{-convergence})$

definition

A decomposition Δ of R_x is a set of couples $\{(V_i, Pat_i)\}_{i \in I}$ such that:

- $\forall i \in I \ Post_{Pat_i}(V_i) \subseteq R_x \ (x\text{-stabilization})$
- $\forall i \in I \ Post_{Pat_i,C}(V_i) \subseteq R_y \ (y\text{-convergence})$

definition and property

Let
$$Post_{\Delta}(X) =_{def} \bigcup_{i \in I} Post_{\pi_i}(X \cap V_i)$$
.

definition

A decomposition Δ of R_x is a set of couples $\{(V_i, Pat_i)\}_{i \in I}$ such that:

- $\forall i \in I \ Post_{Pat_i}(V_i) \subseteq R_x \ (x\text{-stabilization})$
- $\forall i \in I \ Post_{Pat_i,C}(V_i) \subseteq R_y \ (y\text{-convergence})$

definition and property

Let $Post_{\Delta}(X) =_{def} \bigcup_{i \in I} Post_{\pi_i}(X \cap V_i)$. We have:

$$Post_{\Delta}(R_x) \subseteq R_x$$
 and $Post_{\Delta,C}(R_x) \subseteq R_y$.

definition

A decomposition Δ of R_x is a set of couples $\{(V_i, Pat_i)\}_{i \in I}$ such that:

- $\forall i \in I \ Post_{Pat_i}(V_i) \subseteq R_x \ (x\text{-stabilization})$
- $\forall i \in I \ Post_{Pat_i,C}(V_i) \subseteq R_y \ (y\text{-convergence})$

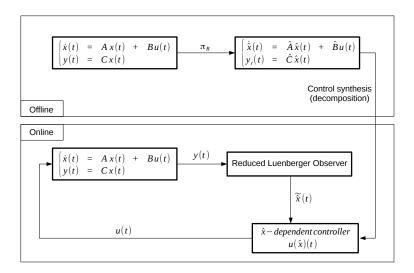
definition and property

Let $Post_{\Delta}(X) =_{def} \bigcup_{i \in I} Post_{\pi_i}(X \cap V_i)$. We have:

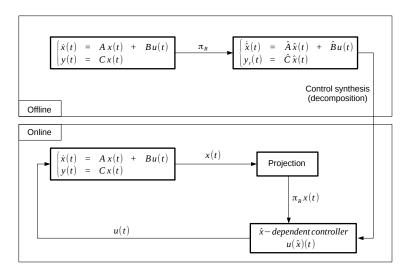
$$Post_{\Delta}(R_x) \subseteq R_x$$
 and $Post_{\Delta,C}(R_x) \subseteq R_y$.

Computational cost of decomposition: at most in $O(2^{nd}N^k)$.

Dealing with high dimensionality: model reduction



Dealing with high dimensionality: model reduction



Outline

- 1 Switched Systems
- 2 State Space Decomposition
- 3 Control of high dimensional switched systems
 - Model Order Reduction
 - Guaranteed offline control
 - Guaranteed online control
- 4 Observation of high dimensional switched systems

Outline

- 1 Switched Systems
- 2 State Space Decomposition
- 3 Control of high dimensional switched systems
 - Model Order Reduction
 - Guaranteed offline control
 - Guaranteed online control
- 4 Observation of high dimensional switched systems
 - Observation of switched systems
 - Numerical test of a reduced order observer

Model Order Reduction by Projection

Construction of a reduced order system $\hat{\Sigma}$ of order $n_r < n$:

$$\hat{\Sigma}: \left\{ \begin{array}{ll} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{array} \right.$$

Construction of a reduced order system $\hat{\Sigma}$ of order $n_r < n$:

$$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{cases}$$

Reduction by a projection (constructed by balanced truncation) $\pi = \pi_L \pi_R, \, \pi_L \in \mathbb{R}^{n \times n_r}, \, \pi_R \in \mathbb{R}^{n_r \times n}$:

$$\hat{A} = \pi_R A \pi_L, \quad \hat{B} = \pi_R B, \quad \hat{C} = C \pi_L.$$

Construction of a reduced order system $\hat{\Sigma}$ of order $n_r < n$:

$$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{cases}$$

Reduction by a projection (constructed by balanced truncation) $\pi = \pi_L \pi_R, \, \pi_L \in \mathbb{R}^{n \times n_r}, \, \pi_R \in \mathbb{R}^{n_r \times n}$:

$$\hat{A} = \pi_R A \pi_L, \quad \hat{B} = \pi_R B, \quad \hat{C} = C \pi_L.$$

Goal: design a controle rule $u(\cdot)$ at the low-order level and apply it at the full-order level.

Construction of a reduced order system $\hat{\Sigma}$ of order $n_r < n$:

$$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{cases}$$

Reduction by a projection (constructed by balanced truncation) $\pi = \pi_L \pi_R, \ \pi_L \in \mathbb{R}^{n \times n_r}, \ \pi_R \in \mathbb{R}^{n_r \times n}$:

$$\hat{A} = \pi_R A \pi_L, \quad \hat{B} = \pi_R B, \quad \hat{C} = C \pi_L.$$

Goal: design a controle rule $u(\cdot)$ at the low-order level and apply it at the full-order level.

Requirements:

• projection of the interest set $\hat{R}_x = \pi_R R_x$

Construction of a reduced order system $\hat{\Sigma}$ of order $n_r < n$:

$$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{cases}$$

Reduction by a projection (constructed by balanced truncation) $\pi = \pi_L \pi_R, \, \pi_L \in \mathbb{R}^{n \times n_r}, \, \pi_R \in \mathbb{R}^{n_r \times n}$:

$$\hat{A} = \pi_R A \pi_L, \quad \hat{B} = \pi_R B, \quad \hat{C} = C \pi_L.$$

Goal: design a controle rule $u(\cdot)$ at the low-order level and apply it at the full-order level.

Requirements:

- projection of the interest set $\hat{R}_x = \pi_R R_x$
- error bounding of the state and output trajectory

Output and state trajectory error [2]

After application of a pattern of length j

• the error between y and y_r is bounded by:

$$\varepsilon_y^j = \|u(\cdot)\|_{\infty}^{[0,j\tau]} \int_0^{j\tau} \|\begin{bmatrix} C & -\hat{C} \end{bmatrix} \begin{bmatrix} e^{tA} & \\ & e^{t\hat{A}} \end{bmatrix} \begin{bmatrix} B \\ \hat{B} \end{bmatrix} \|dt + \sup_{x_0 \in R_x} \|\begin{bmatrix} C & -\hat{C} \end{bmatrix} \begin{bmatrix} e^{j\tau A} \\ & e^{j\tau \hat{A}} \end{bmatrix} \begin{bmatrix} x_0 \\ \pi_R x_0 \end{bmatrix} \|.$$

Output and state trajectory error [2]

After application of a pattern of length j

■ the error between y and y_r is bounded by:

$$\varepsilon_y^j = \|u(\cdot)\|_{\infty}^{[0,j\tau]} \int_0^{j\tau} \|\begin{bmatrix} C & -\hat{C} \end{bmatrix} \begin{bmatrix} e^{tA} \\ e^{t\hat{A}} \end{bmatrix} \begin{bmatrix} B \\ \hat{B} \end{bmatrix} \|dt + \sup_{x_0 \in R_x} \|\begin{bmatrix} C & -\hat{C} \end{bmatrix} \begin{bmatrix} e^{j\tau A} \\ e^{j\tau \hat{A}} \end{bmatrix} \begin{bmatrix} x_0 \\ \pi_R x_0 \end{bmatrix} \|.$$

• the error between $\pi_R x$ and \hat{x} is bounded by:

$$\varepsilon_x^j = \|u(\cdot)\|_{\infty}^{[0,j\tau]} \int_0^{j\tau} \| \begin{bmatrix} \pi_R & -I_{n_r} \end{bmatrix} \begin{bmatrix} e^{tA} & \\ & e^{t\hat{A}} \end{bmatrix} \begin{bmatrix} B \\ \hat{B} \end{bmatrix} \| dt + \frac{1}{2} \left[\frac{e^{j\tau A}}{\pi_R x_0} \right] \begin{bmatrix} \pi_R & -I_{n_r} \end{bmatrix} \begin{bmatrix} e^{j\tau A} & \\ & e^{j\tau \hat{A}} \end{bmatrix} \begin{bmatrix} x_0 & \\ & \pi_R x_0 \end{bmatrix} \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}{\pi_R x_0} \right] \| dt + \frac{1}{2} \left[\frac{e^{j\tau \hat{A}}}$$

Two systems:

■ Full-order system: Σ , R_x , R_y

$$\Sigma : \left\{ \begin{array}{l} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{array} \right.$$

Reduced-order system: $\hat{\Sigma}$, \hat{R}_x , R_y

$$\hat{\Sigma}: \left\{ \begin{array}{ll} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{array} \right.$$

Two systems:

■ Full-order system: Σ , R_x , R_y

$$\Sigma : \left\{ \begin{array}{l} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{array} \right.$$

Reduced-order system: $\hat{\Sigma}$, \hat{R}_x , R_y

$$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{cases}$$

Two systems:

■ Full-order system: Σ , R_x , R_y

$$\Sigma : \left\{ \begin{array}{l} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{array} \right.$$

Reduced-order system: $\hat{\Sigma}$, \hat{R}_x , R_y

$$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{cases}$$

Control synthesis (decomposition) for the reduced-order system.

 \Rightarrow reduced-order control

Two systems:

■ Full-order system: Σ , R_x , R_y

$$\Sigma : \left\{ \begin{array}{l} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{array} \right.$$

Reduced-order system: $\hat{\Sigma}$, \hat{R}_x , R_y

$$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{cases}$$

- \Rightarrow reduced-order control
- \Rightarrow application of the reduced-order control to the full-order system

Two systems:

■ Full-order system: Σ , R_x , R_y

$$\Sigma : \left\{ \begin{array}{l} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{array} \right.$$

Reduced-order system: $\hat{\Sigma}$, \hat{R}_x , R_y

$$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{cases}$$

- \Rightarrow reduced-order control
- \Rightarrow application of the reduced-order control to the full-order system Questions:

Two systems:

■ Full-order system: Σ , R_x , R_y

$$\Sigma : \left\{ \begin{array}{l} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{array} \right.$$

Reduced-order system: $\hat{\Sigma}$, \hat{R}_x , R_y

$$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{cases}$$

- \Rightarrow reduced-order control
- \Rightarrow application of the reduced-order control to the full-order system Questions:
 - How is it applied?

Two systems:

■ Full-order system: Σ , R_x , R_y

$$\Sigma : \left\{ \begin{array}{l} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{array} \right.$$

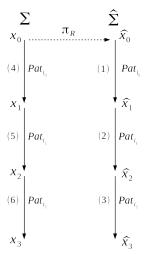
Reduced-order system: $\hat{\Sigma}$, \hat{R}_x , R_y

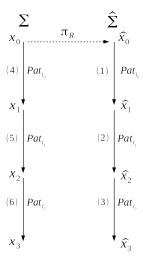
$$\hat{\Sigma} : \begin{cases} \dot{\hat{x}}(t) &= \hat{A}\hat{x}(t) + \hat{B}u(t), \\ y_r(t) &= \hat{C}\hat{x}(t). \end{cases}$$

- \Rightarrow reduced-order control
- \Rightarrow application of the reduced-order control to the full-order system Questions:
 - How is it applied?
 - Is the reduced-order control effective at the full-order level?

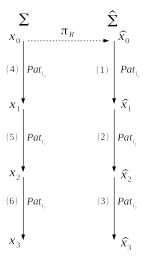
Outline

- 1 Switched Systems
- 2 State Space Decomposition
- 3 Control of high dimensional switched systems
 - Model Order Reduction
 - Guaranteed offline control
 - Guaranteed online control
- 4 Observation of high dimensional switched systems
 - Observation of switched systems
 - Numerical test of a reduced order observer

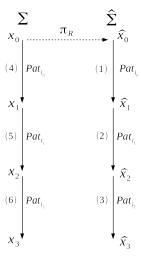




1 Projection of the initial state x_0



- **1** Projection of the initial state x_0
- 2 Computation of a pattern sequence at the low-order level Pat_{i_0} , Pat_{i_1} ... (steps (1),(2),(3))



- **1** Projection of the initial state x_0
- 2 Computation of a pattern sequence at the low-order level Pat_{i_0} , Pat_{i_1} ... (steps (1),(2),(3))
- Application of the pattern sequence at the full-order level (steps (4),(5),(6)).

Application of the same pattern sequence:

Application of the same pattern sequence:

$$\Rightarrow \forall t = j\tau > 0, \quad ||y(t) - y_r(t)|| \le \varepsilon_y^j$$

Application of the same pattern sequence:

$$\Rightarrow \forall t = j\tau > 0, \quad ||y(t) - y_r(t)|| \le \varepsilon_y^j$$

$$\Rightarrow \forall t = j\tau > 0, \quad ||y(t) - y_r(t)|| \le \varepsilon_y^{\infty} = \sup_{j>0} \varepsilon_y^j$$

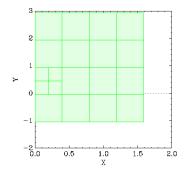
Application of the same pattern sequence:

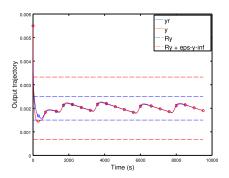
$$\Rightarrow \forall t = j\tau > 0, \quad ||y(t) - y_r(t)|| \le \varepsilon_y^j$$

$$\Rightarrow \forall t = j\tau > 0, \quad ||y(t) - y_r(t)|| \le \varepsilon_y^{\infty} = \sup_{j>0} \varepsilon_y^j$$

Consequence: the output of the full order system is sent in $R_y + \varepsilon_y^{\infty}$.

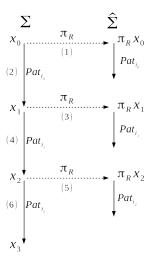
Simulation on a linearized model of a distillation column: n = 11 and $n_r = 2$:

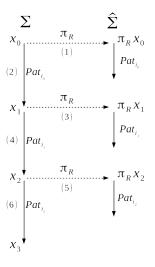




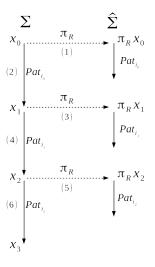
Outline

- 1 Switched Systems
- 2 State Space Decomposition
- 3 Control of high dimensional switched systems
 - Model Order Reduction
 - Guaranteed offline control
 - Guaranteed online control
- 4 Observation of high dimensional switched systems
 - Observation of switched systems
 - Numerical test of a reduced order observer

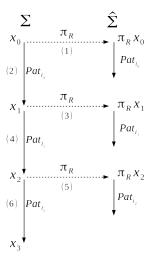




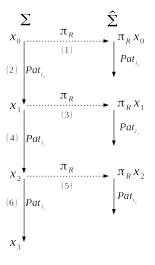
Projection of the initial state x_0 (step (1))



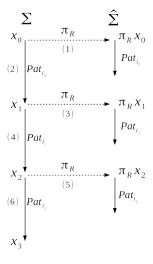
- Projection of the initial state x_0 (step (1))
- **2** Computation of the pattern Pat_{i_0} at the reduced-order level



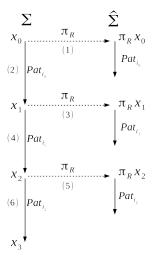
- Projection of the initial state x_0 (step (1))
- 2 Computation of the pattern Pat_{i_0} at the reduced-order level
- 3 Application of the pattern Pat_{i_0} at the full-order level, Σ is sent to a state x_1 (step (2))



- Projection of the initial state x_0 (step (1))
- 2 Computation of the pattern Pat_{i_0} at the reduced-order level
- 3 Application of the pattern Pat_{i_0} at the full-order level, Σ is sent to a state x_1 (step (2))
- Projection of the (new initial) state x_1 (step (3))



- Projection of the initial state x_0 (step (1))
- 2 Computation of the pattern Pat_{i_0} at the reduced-order level
- 3 Application of the pattern Pat_{i_0} at the full-order level, Σ is sent to a state x_1 (step (2))
- 4 Projection of the (new initial) state x_1 (step (3))
- **5** Computation of the pattern Pat_{i_1} at the reduced-order level



- Projection of the initial state x_0 (step (1))
- 2 Computation of the pattern Pat_{i_0} at the reduced-order level
- 3 Application of the pattern Pat_{i_0} at the full-order level, Σ is sent to a state x_1 (step (2))
- 4 Projection of the (new initial) state x_1 (step (3))
- **5** Computation of the pattern Pat_{i_1} at the reduced-order level
- 6 Application of the pattern Pat_{i_1} at the full-order level, Σ is sent to a state x_2 (step (4))...

Requirement to apply the online procedure:

Requirement to apply the online procedure:

■ Ensure that $\pi_R Post_{Pat_i}(x) \in \hat{R}_x$ at every step.

Requirement to apply the online procedure:

■ Ensure that $\pi_R Post_{Pat_i}(x) \in \hat{R}_x$ at every step.

Solution: Compute an ε -decomposition

definition

A ε -decomposition Δ of R_x is a set of couples $\{(V_i, Pat_i)\}_{i \in I}$ such that:

- $\blacksquare \ \forall i \in I \ Post_{Pat_i}(V_i) \subseteq R_x \varepsilon_x^{|Pat_i|}$
- $\forall i \in I \ Post_{Pat_i,C}(V_i) \subseteq R_y \ (y\text{-convergence})$

An ε -decomposition performed on $\hat{\Sigma}$ permits to iterate the online procedure:

An ε -decomposition performed on $\hat{\Sigma}$ permits to iterate the online procedure:

• At a step k, $\pi_R x_k$ is sent in $\hat{R}_x - \varepsilon_x^{|Pat_{i_k}|}$

Guaranteed Online Control

An ε -decomposition performed on $\hat{\Sigma}$ permits to iterate the online procedure:

- At a step k, $\pi_R x_k$ is sent in $\hat{R}_x \varepsilon_x^{|Pat_{i_k}|}$
- we have:

$$\|\pi_R Post_{Pat}(x) - Post_{Pat}(\pi_R x)\| \le \varepsilon_x^{|Pat_{i_k}|}$$

Guaranteed Online Control

An ε -decomposition performed on $\hat{\Sigma}$ permits to iterate the online procedure:

- At a step k, $\pi_R x_k$ is sent in $\hat{R}_x \varepsilon_x^{|Pat_{i_k}|}$
- we have:

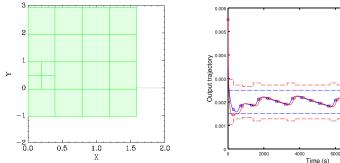
$$\|\pi_R Post_{Pat}(x) - Post_{Pat}(\pi_R x)\| \le \varepsilon_x^{|Pat_{i_k}|}$$

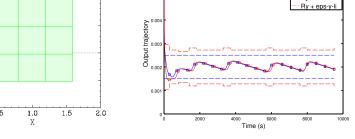
 \blacksquare thus, at every step k:

$$\pi_R Post_{Pat_{i_k}}(x_k) \in \hat{R}_x$$

Guaranteed Online Control

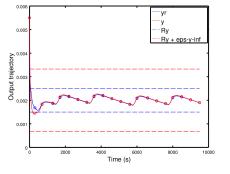
Simulation on a linearized model of a distillation column: n = 11 and $n_r = 2$:

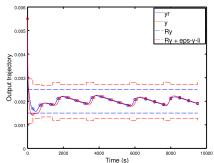




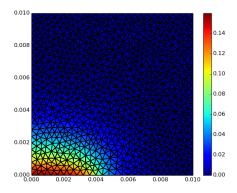
Remark: Output trajectory error depending on the length of the applied pattern: much lower than the infinite bound ε_{y}^{∞}

Comparison of the Two Procedures



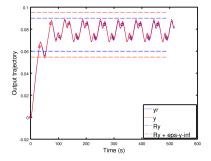


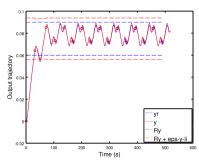
• Control of the temperature of a square plate discretized by finite elements: offline and online control n=897



 Control of the temperature of a square plate discretized by finite elements: offline and online control

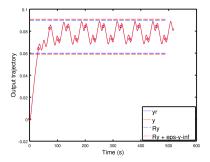
$$n = 897 \text{ and } n_r = 2$$

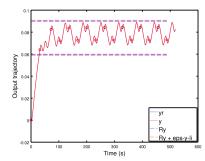




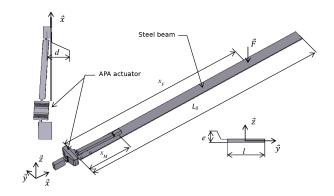
■ Control of the temperature of a square plate discretized by finite elements: offline and online control

$$n = 897 \text{ and } n_r = 3$$

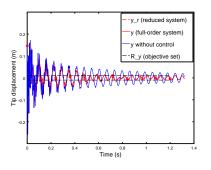


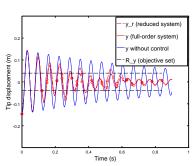


■ Vibration (online) control of a cantilever beam: n = 120 and $n_r = 4$

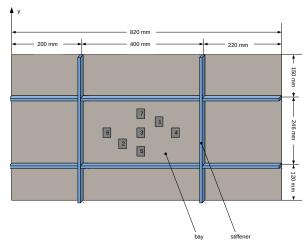


■ Vibration (online) control of a cantilever beam: n = 120 and $n_r = 4$



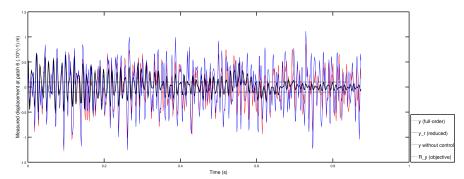


■ Vibration (online) control of an aircraft panel: n = 57000 and $n_r = 6$



■ Vibration (online) control of an aircraft panel:

 $n = 57000 \text{ and } n_r = 6$



Outline

- 1 Switched Systems
- 2 State Space Decomposition
- 3 Control of high dimensional switched systems
- 4 Observation of high dimensional switched systems
 - Observation of switched systems
 - Numerical test of a reduced order observer

Outline

- 1 Switched Systems
- 2 State Space Decomposition
- 3 Control of high dimensional switched systems
 - Model Order Reduction
 - Guaranteed offline control
 - Guaranteed online control
- 4 Observation of high dimensional switched systems
 - Observation of switched systems
 - Numerical test of a reduced order observer

Given the switched system:

$$\Sigma : \left\{ \begin{array}{ll} \dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t). \end{array} \right.$$

During a real online use, only y(t) is known.

Given the switched system:

$$\Sigma : \left\{ \begin{array}{ll} \dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t). \end{array} \right.$$

During a real online use, only y(t) is known.

Question: how can we control Σ with the only information of y?

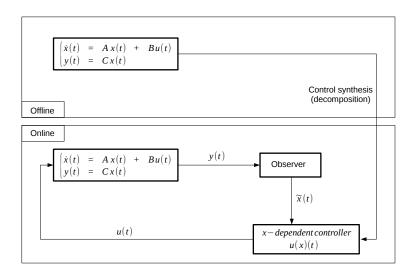
Given the switched system:

$$\Sigma : \left\{ \begin{array}{ll} \dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t). \end{array} \right.$$

During a real online use, only y(t) is known.

Question: how can we control Σ with the only information of y?

 \Rightarrow An observer: intermediate system, provides an estimate \tilde{x} of the state x of Σ



Given the switched system:

$$\Sigma : \left\{ \begin{array}{ll} \dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t). \end{array} \right.$$

During a real online use, only y(t) is known.

Question: how can we control Σ with the only information of y?

 \Rightarrow An observer: intermediate system, provides an estimate \tilde{x} of the state x of Σ

Given the switched system:

$$\Sigma : \left\{ \begin{array}{ll} \dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t). \end{array} \right.$$

During a real online use, only y(t) is known.

Question: how can we control Σ with the only information of y?

 \Rightarrow An observer: intermediate system, provides an estimate \tilde{x} of the state x of Σ

Question: which observer?

Given the switched system:

$$\Sigma : \left\{ \begin{array}{ll} \dot{x}(t) &= Ax(t) + Bu(t), \\ y(t) &= Cx(t). \end{array} \right.$$

During a real online use, only y(t) is known.

Question: how can we control Σ with the only information of y?

 \Rightarrow An observer: intermediate system, provides an estimate \tilde{x} of the state x of Σ

Question: which observer?

⇒ Kalman filter, High gain observer, Luenberger observer?

■ Dynamics of the Luenberger observer:

$$\dot{\tilde{x}} = A\tilde{x} - L(u)(C\tilde{x} - y) + Bu, \quad L(u) \in \mathbb{R}^{n \times m}$$

■ Dynamics of the Luenberger observer:

$$\dot{\tilde{x}} = A\tilde{x} - L(u)(C\tilde{x} - y) + Bu, \quad L(u) \in \mathbb{R}^{n \times m}$$

 \Rightarrow Adapted to switched systems (because of L(u))

■ Dynamics of the Luenberger observer:

$$\dot{\tilde{x}} = A\tilde{x} - L(u)(C\tilde{x} - y) + Bu, \quad L(u) \in \mathbb{R}^{n \times m}$$

- \Rightarrow Adapted to switched systems (because of L(u))
- \Rightarrow Easy implementation

■ Dynamics of the Luenberger observer:

$$\dot{\tilde{x}} = A\tilde{x} - L(u)(C\tilde{x} - y) + Bu, \quad L(u) \in \mathbb{R}^{n \times m}$$

- \Rightarrow Adapted to switched systems (because of L(u))
- \Rightarrow Easy implementation
- \Rightarrow Many good properties...

Dynamics of the Luenberger observer:

$$\dot{\tilde{x}} = A\tilde{x} - L(u)(C\tilde{x} - y) + Bu, \quad L(u) \in \mathbb{R}^{n \times m}$$

- \Rightarrow Adapted to switched systems (because of L(u))
- \Rightarrow Easy implementation
- \Rightarrow Many good properties...
- Objective: find a strategy such that the observer converges:

$$\eta(t) = |\tilde{x}(t) - x(t)| \xrightarrow[t \to +\infty]{} 0$$

Hypotheses:

- $\blacksquare \ \exists P>0, \quad s.t. \quad P(A+L(u)C)+(A+L(u)C)^\top P \leq 0 \quad \forall u.$

Hypotheses:

- $\blacksquare \ \exists P>0, \quad s.t. \quad P(A+L(u)C)+(A+L(u)C)^\top P \leq 0 \quad \forall u.$

Theorem

[Serres, Vivalda, Riedinger, IEEE Trans.Auto.Cont. 2011]

With an appropriate¹ choice of patterns, the observer converges

¹appropriate = every pattern takes particular values given by the study of e.

Hypotheses:

- $\blacksquare \ \exists P>0, \quad s.t. \quad P(A+L(u)C)+(A+L(u)C)^\top P \leq 0 \quad \forall u.$

Theorem

[Serres, Vivalda, Riedinger, IEEE Trans.Auto.Cont. 2011]

With an appropriate¹ choice of patterns, the observer converges monotonically.

¹appropriate = every pattern takes particular values given by the study of e.

Hypotheses:

- $\blacksquare \ \exists P>0, \quad s.t. \quad P(A+L(u)C)+(A+L(u)C)^\top P \leq 0 \quad \forall u.$

Theorem

[Serres, Vivalda, Riedinger, IEEE Trans.Auto.Cont. 2011]

With an appropriate¹ choice of patterns, the observer converges monotonically.

i.e. $\eta(t) \underset{t \to +\infty}{\longrightarrow} 0$ and $\eta(t)$ decreases monotonically.

¹appropriate = every pattern takes particular values given by the study of e.

Hypotheses:

- $\exists P > 0, \quad s.t. \quad P(A + L(u)C) + (A + L(u)C)^{\top}P \le 0 \quad \forall u.$

Theorem

[Serres, Vivalda, Riedinger, IEEE Trans.Auto.Cont. 2011]

With an appropriate¹ choice of patterns, the observer converges monotonically.

i.e. $\eta(t) \underset{t \to +\infty}{\longrightarrow} 0$ and $\eta(t)$ decreases monotonically.

Proof based on the study of

$$\dot{e} = (A - L(u)C)e$$

where $e(t) = x(t) - \tilde{x}(t)$

 1 appropriate = every pattern takes particular values given by the study of e.

Supposing that the initial reconstruction error is inferior to η_0

definition

Supposing that the initial reconstruction error is inferior to η_0

definition

Supposing that the initial reconstruction error is inferior to η_0

definition

- $\forall i \in I \ Post_{Pat_i}(V_i + \eta_0) \subseteq R_x \eta_0 \text{ and } Pat_i \text{ takes particular value}$

Supposing that the initial reconstruction error is inferior to η_0

definition

- $\forall i \in I \ Post_{Pat_i}(V_i + \eta_0) \subseteq R_x \eta_0 \text{ and } Pat_i \text{ takes particular value}$
- $\forall i \in I \; Post_{Pat_i,C}(V_i + \eta_0) \subseteq R_y \; \text{and} \; Pat_i \; \text{takes particular value}$

Supposing that the initial reconstruction error is inferior to η_0

definition

A observer based decomposition $\tilde{\Delta}$ of R_x is a set of couples $\{(V_i, Pat_i)\}_{i \in I}$ such that:

- $\forall i \in I \ Post_{Pat_i}(V_i + \eta_0) \subseteq R_x \eta_0 \text{ and } Pat_i \text{ takes particular value}$
- $\forall i \in I \ Post_{Pat_i,C}(V_i + \eta_0) \subseteq R_y \text{ and } Pat_i \text{ takes particular value}$

definition and property

Let
$$Post_{\Delta}(X) =_{def} \bigcup_{i \in I} Post_{\pi_i}(X \cap V_i)$$
.

Supposing that the initial reconstruction error is inferior to η_0

definition

A observer based decomposition $\tilde{\Delta}$ of R_x is a set of couples $\{(V_i, Pat_i)\}_{i \in I}$ such that:

- $\forall i \in I \ Post_{Pat_i}(V_i + \eta_0) \subseteq R_x \eta_0 \text{ and } Pat_i \text{ takes particular value}$
- $\forall i \in I \ Post_{Pat_i,C}(V_i + \eta_0) \subseteq R_y \text{ and } Pat_i \text{ takes particular value}$

definition and property

Let $Post_{\Delta}(X) =_{def} \bigcup_{i \in I} Post_{\pi_i}(X \cap V_i)$. We have:

$$Post_{\tilde{\Delta}}(R_x + \eta_0) \subseteq R_x - \eta_0$$
 and $Post_{\Delta,C}(R_x + \eta_0) \subseteq R_y$.

Outline

- 1 Switched Systems
- 2 State Space Decomposition
- 3 Control of high dimensional switched systems
 - Model Order Reduction
 - Guaranteed offline control
 - Guaranteed online control
- 4 Observation of high dimensional switched systems
 - Observation of switched systems
 - Numerical test of a reduced order observer

Numerical implementation with model reduction

An ε -decomposition is performed.

Use of a reduced Luenberger observer:

$$\dot{\hat{x}} = \hat{A}\tilde{\hat{x}} - L(u)(\hat{C}\tilde{\hat{x}} - Cx) + \hat{B}u, \quad L(u) \in \mathbb{R}^{n_r \times m}$$

Numerical implementation with model reduction

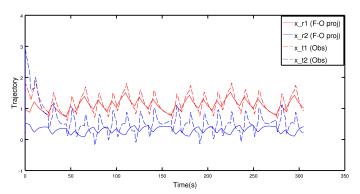
An ε -decomposition is performed.

Use of a reduced Luenberger observer:

$$\dot{\hat{x}} = \hat{A}\tilde{\hat{x}} - L(u)(\hat{C}\tilde{\hat{x}} - Cx) + \hat{B}u, \quad L(u) \in \mathbb{R}^{n_r \times m}$$

Simulation on the thermal plate problem:

Full-order system initialized at 0.06^{897} , observer initialized at 0^{897}



Numerical implementation with model reduction

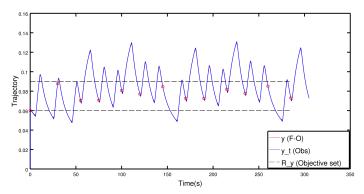
An ε -decomposition is performed.

Use of a reduced Luenberger observer:

$$\dot{\hat{x}} = \hat{A}\tilde{\hat{x}} - L(u)(\hat{C}\tilde{\hat{x}} - Cx) + \hat{B}u, \quad L(u) \in \mathbb{R}^{n_r \times m}$$

Simulation on the thermal plate problem:

Full-order system initialized at 0.06^{897} , observer initialized at 0^{897}



Conclusions

- Guaranteed reduced order control
- Guaranteed observer based control
- Numerical simulations encouraging for reduced observer based control, but no proof of the efficiency yet (ingredient required: a bound of the error between $\pi_R x$ and \tilde{x} , W.I.P.)

Conclusions

- Guaranteed reduced order control
- Guaranteed observer based control
- Numerical simulations encouraging for reduced observer based control, but no proof of the efficiency yet (ingredient required: a bound of the error between $\pi_R x$ and \tilde{x} , W.I.P.)

Future work

- Decomposition using dimensionality reduction (projection on more adapted reduced spaces using post-process techniques)
- Improvement of model reduction techniques (adapted to hyperbolic and non-linear systems)
- Control of non-linear systems/PDEs

Some References

Laurent Fribourg, Ulrich Kühne, and Romain Soulat.

Minimator: a tool for controller synthesis and computation of minimal invariant sets for linear switched systems, March 2013.

Zhi Han and Bruce Krogh.

Reachability analysis of hybrid systems using reduced-order models. In *American Control Conference*, pages 1183–1189, IEEE, 2004.

Adrien Le Coënt, Florian de Vusyt, Christian Rey, Ludovic Chamoin, and Laurent Fribourg.

Guaranteed control of switched control systems using model order reduction and state-space bisection.

Open Acces Series in Informatics, 2015.

Ulysse Serres, Jean-Claude Vivalda, and Pierre Riedinger.

On the convergence of linear switched systems.

IEEE Transactions on Automatic Control, 56(2):320-332, 2011.

Some References

Laurent Fribourg, Ulrich Kühne, and Romain Soulat.

Minimator: a tool for controller synthesis and computation of minimal invariant sets for linear switched systems, March 2013.

Zhi Han and Bruce Krogh.

Reachability analysis of hybrid systems using reduced-order models. In *American Control Conference*, pages 1183–1189, IEEE, 2004.

Adrien Le Coënt, Florian de Vusyt, Christian Rey, Ludovic Chamoin, and Laurent Fribourg.

Guaranteed control of switched control systems using model order reduction and state-space bisection.

Open Acces Series in Informatics, 2015.

Ulysse Serres, Jean-Claude Vivalda, and Pierre Riedinger.

On the convergence of linear switched systems.

IEEE Transactions on Automatic Control, 56(2):320-332, 2011.

Thank you! Questions?