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Abstract. This paper introduces the concept of functional current as a math-

ematical framework to represent and treat functional shapes, i.e. sub-manifold
supported signals. It is motivated by the growing occurrence, in medical

imaging and computational anatomy, of what can be described as geometrico-

functional data, that is a data structure that involves a deformable shape
(roughly a finite dimensional sub manifold) together with a function defined

on this shape taking value in another manifold.

Indeed, if mathematical currents have already proved to be very efficient
theoretically and numerically to model and process shapes as curves or sur-

faces ([6] and [11]), they are limited to the manipulation of purely geometrical
objects. We show that the introduction of the concept of functional currents

offers a genuine solution to the simultaneous processing of the geometric and

signal information of any functional shape. We explain how functional currents
can be equipped with a Hilbertian norm mixing geometrical and functional

content of functional shapes nicely behaving under geometrical and functional

perturbations and paving the way to various processing algorithms. We illus-
trate this potential on two problems: the redundancy reduction of functional

shapes representations through matching pursuit schemes on functional cur-

rents and the simultaneous geometric and functional registration of functional
shapes under diffeomorphic transport.
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1. Introduction

Shape analysis is certainly one the most challenging problem in pattern recog-
nition and computer vision [4, 14, 5, 3, 17]. Moreover, during the last decade,
shape analysis has played a major role in medical imaging through the emergence
of computational anatomy [13, 25, 19, 1, 18, 20]. More specifically, the quest of
anatomical biomarkers through the analysis of normal and abnormal geometri-
cal variability of anatomical manifolds has fostered the development of innovative
mathematical frameworks for the representation and the comparison of a large
variety of geometrical objects. Among them, since their very first significant emer-
gence in the field of computational anatomy, mathematical currents have become
more and more commonly used framework to represent and analyse shapes of very
various natures, from unlabelled landmarks to curves ([11]), fiber bundles ([7]) sur-
faces ([12]) or 3D volumes. The reasons of this success, which we shall detail in
the next section, lie basically in the generality of the framework with respect to a
very wide collection of geometrical features as well as in their robustness to change
of topology and of parametrization. The crucial step at this point is to define a
proper distance between currents that faithfully transcribes variations of geometry
itself. This problem has been successfully addressed by embedding current spaces
into Reproducing Kernel Hilbert Spaces (RKHS), providing kernel-based norms on
currents which are fully geometric (independent of parametrization) and enable
practical computations in a very nice setting. Such norms and the resulting dis-
tances allow to define attachment terms between the geometrical objects, which are
then used for instance to drive registration algorithms on shapes ([12], [11]) and
perform statistical analysis of their variability ([7], [9]).

More recently though, an increasing number of data structures have emerged in
computational anatomy that not only involve a geometrical shape but some signal
attached on this shape, to which we give the general name of functional shapes.
The most basic example is, of course, classical images for which the geometrical
support is simply a rectangle on which is given a ’grey level’ signal. In many cases
however, the support can have a much more complex geometry like, for instance,
the activation maps on surfaces of cortex obtained through fMRI scans. Signals
can also include structures that are more sophisticated than simple real values :
we could think of a vector field on a surface as well as tensor-valued signal that
appear in DTI imaging. Such a diversity both in shape and signal makes it a
particularly delicate issue to embed all geometrico-functional objects in one common
framework. Despite several attempts to model them directly as currents, important
limitations of currents were found in such problems, which we will develop in section
2. As a result, recent approaches have been rather investigating methods where
shape and signal are treated separately instead of trying to define an attachment
distance between geometrico-functional objects. This is the case for instance in
[23] where authors propose a registration algorithm for fMRI data in which is
performed an anatomic matching followed by a second one based on the values
of the signals. However, all these frameworks have two important drawbacks : they
are first very specific to a certain type of dataset and they require an exact one to
one correspondence between the two shapes in order to further compare functional
values, whereas in many applications inexact matchings are far more appropriate.
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The purpose of this paper is to describe and explore a new analytical setting to
work on the most general problem of representation and comparison of geometrico-
functional structures (compatible with any change of parametrisation of their ge-
ometrical supports) treated as elements of an embedding functional vector space,
here a Reproducing Kernel Hilbert Space, on which many desirable operations can
be performed.

Our new analytical setting shares some common features with the mathematical
current setting that will be recalled briefly in section 2 but overcome its main limi-
tations when dealing with functional shapes. The core idea, developed in section 3
is to augment usual currents with an extra component embedding the signal values
by a natural tensor product leading to our definition of functional currents. We
consider then various actions on functional currents by diffeomorphic transport in
section 3 and shows in section 4 that kernel norms can provide a suitable Hilber-
tian structure on functional currents generalizing greatly what has been done for
currents. We also show in what sense this representation and RKHS metric on
functional currents is consistent with the idea of comparing functional shapes with
respect to deformations between them, which makes it a good approach for defining
attachment distances. The two main results on this topic are the control results of
propositions 3 and 4. We then illustrate the potential of this new metric setting in
section 5 on two different problems. The first illustration is the construction, via a
matching pursuit algorithm, of redundancy reduction or compression algorithm of
the representation of functional shapes by functional currents with few examples of
compression on curves and surfaces with real-valued data. The second illustration
is about the potential benefits of functional currents in the field of computational
anatomy. In particular, we show a few basic results of diffeomorphic matching
between functional shapes with our extension of large deformation diffeomorphic
metric mapping (LDDMM) algorithm [2] to functional currents.

2. Currents in the modelling of shapes

2.1. A brief presentation of currents in computational anatomy. Currents
were historically introduced as a generalization of distributions by L. Schwartz and
then G. De Rham in [21]. The theory was later on considerably developed and
connected to geometric measure theory in great part by H. Federer [10]. In the first
place, these results found interesting applications in calculus of variations as well
as differential equations. However, the use of currents in the field of computational
anatomy is fairly more recent since it was considered for the first time in [11]. In
the following, we try to outline the minimum background of theory about currents
needed to recall the link between shapes and currents.

First of all, we fix some notations. Let’s call E a generic euclidean space of
dimension n. We will denote by Ωp0(E) the space of continuous p-differential forms
on E that vanish at infinity. Every element ω of Ωp0(E) is then a continuous
function such that for all x ∈ E, ω(x) ∈ ΛpE∗. Since we have the isomorphism
ΛpE∗ ≈ (ΛpE)

∗
, we can see both ω(x) as a p-multilinear and alternated form on

E and as a linear form on the
(
n
p

)
-dimensional space of p-vectors in E. For all the

following, we will use the notation ωx(ξ) as the evaluation of a differential form ω at
point x ∈ E and on the p-vector ξ. On ΛpE can be defined an euclidean structure
induced by the one of E, which is such that if ξ = ξ1 ∧ .. ∧ ξp and η = η1 ∧ .. ∧ ηp
are two simple p-vectors, 〈ξ, η〉 = det(〈ξi, ηj〉)i,j . The norm of a simple p-vector
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is therefore the volume of the element. The space Ωp0(E) is then equipped with
the infinite norm of bounded functions defined on E. These notations adopted, we
define the space of p-currents on E as the topological dual Ωp0(E)′, i.e. the space of
linear and continuous forms on Ωp0(E). Note that in the special case where p = 0,
the previous definition is exactly the one of usual distributions on E that can be
also seen as signed measures on E. Simplest examples of currents are given by
generalization of a Dirac mass : if x ∈ E and ξ ∈ ΛpE, δξx is the current that
associates to any ω ∈ Ωp0(E) its evaluation ωx(ξ).

Now, the relationship between shapes and currents lies fundamentally in the fact
that every d-dimensional and oriented sub-manifold X of E of finite volume can be
represented by an element of Ωp0(E)′. Indeed, we know from integration theory on
manifolds ([10],[15]) that any d-differential form of Ωp0(E) can be integrated along
X, which associates to X a d-current CX such that :

(1) CX(ω) =

∫
X

ω

for all ω ∈ Ωp0(E). The application X 7→ CX is also injective. Equation (1) can be
rewritten in a more explicit way if X admits a parametrization given by a certain
smooth immersion F : U → E with U an open subset of Rd. Then,

CX(ω) =

∫
(x1,..,xd)∈U

ωF (x1,..,xd)

(
∂F

∂x1
∧ ... ∧ ∂F

∂xd

)
dx1...dxd .

It is a straightforward computation to check that the last expression is actually
independent of the parametrization (as far as the orientation is conserved). In
the general case, there always exists a partition of the unit adapted to the local
charts of X, so that CX could be expressed as a combination of such terms. The
representation is fully geometric in the sense that it only depends on the manifold
structure itself and not on the choice of a parametrization. Currents’ approach
therefore allows to consider sub-manifolds of given dimension (curves, surfaces,...)
as elements of a fixed functional vector space. This also gives a very flexible setting
to manipulate shapes since addition, combination or averages become straightfor-
ward to define. On the other hand, spaces of currents contain a lot more than
sub-manifolds because general currents do not usually derive from sub-manifolds
(think for instance of a punctual current δξx). However, it encompasses in a unified
approach a wide variety of geometrical objects as for instance sets of curves and
surfaces which can be relevant in some anatomy problems.

In registration issues, a fundamental operation is the transport of objects by a
diffeomorphism of the ambient space. If C ∈ Ωp0(E)′ and φ ∈ Diff(E), we define
the transport of C by φ as the classical push-forward operation denoted φ]C :

(2) ∀ω ∈ Ωp0(E), (φ∗C) (ω) = C (φ∗ω)

where φ∗ω is the usual pull-back of a differential form defined for all x ∈ E and
ξ = ξ1 ∧ ... ∧ ξp ∈ ΛpE by :

(3) (φ∗ω)x (ξ) = ωφ(x)(dxφ(ξ1) ∧ ... ∧ dxφ(ξp))

dxφ being the notation we use for the differential of the diffeomorphism at point
x. With this definition, it’s a straightforward proof to check that φ∗CX = Cφ(X),
which means that the d-current associated to a submanifold transported by φ is the
d-current associated to the transported submanifold φ(X).
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To complete this brief presentation of currents applied to computational anatomy,
we still need to explain how the currents’ representation can be practically imple-
mented and how computations can be made on them. This step consists mainly
in approximating the integral in (1) into a discrete sum of punctual currents
CX ≈

∑
k=1..N δ

ξk
xk

where xk are points in E and d-vectors ξk encode local ele-
ments of volume of the manifold X. A manifold X would be then stored as a list
of N momenta δξkxk consisting of points’ coordinates and corresponding d-vectors.
However, the transition between X and its approximation as a discrete current
cannot usually be performed in a standard way. Computationally, a mesh on the
sub-manifold is needed. Let’s examine the two most frequent cases of curves and
surfaces. Let γ : I → E be a continuous curve in E given by a sampling of N points
{xk = γ(tk)}k=1..N . Starting from this approximation of γ as a polygonal line, we
can associate the 1-current defined by :

C̃γ =

N−1∑
j=1

δτjcj

with cj the center of segment [xjxj+1] and τj the vector xj+1−xj . It can be proved

easily that |CX(ω) − C̃X(ω)| tends toward zero for all 1-form ω as maxk{|tk+1 −
tk|} → 0, i.e. as the sampling gets more accurate (cf [11]). Same process can
be applied to a triangulated surface S immersed in E = R3. We associate to each

triangle of the mesh xjxj+1xj+2 a punctual current δ
ξj
cj with cj = 1

3 (xj+xj+1+xj+2)

and ξj = 1
2 (xj+1−xj)∧ (xj+2−xj). Since we have Λ2R3 ≈ R3, the previous formal

2-vector can be identified to the usual wedge product of vectors in R3, that is the
normal vector to the surface whose norm encodes the area of the triangle. Again, it
can be shown that this approximated current gets closer and closer to the actual CS
as the mesh is refined. Eventually, the surface is represented as a finite collection
of points and normal vectors in the space E.

Finally, the question of building a metric on the space of currents should be ad-
dressed. There are several norms traditionally defined on Ωp0(E)′ such as the mass
norm or the flat norm. However, those are either not easily computable in practice
or unfitted to comparison between shapes (see [6] chap 1.5). A particularly nice
framework to avoid both problems is to define a Hilbert space structure on currents
through reproducing kernel Hilbert space (RKHS) theory. This approach consists
in defining a vector kernel on E (K : E × E → L(ΛpE)) and its associated RKHS
W . Under some assumptions on the kernel, it can be shown that the space of
p-currents is continuously embedded in the dual W ′ which is also a Hilbert space.
Therefore, in applications, we generally consider W ′ instead of Ωp0(E)′ as our actual
space of currents. For more details on the construction of RKHS on currents, we
refer to [6] and [11]. Since, in applications, manifold are represented by sums of
punctual currents, it’s sufficient to be able to compute inner products between two
punctual currents. RKHS framework precisely gives simple closed expressions of
such products. Indeed, one can show that 〈δξ1x1

, δξ2x2
〉W ′ = ξT1 K(x1, x2)ξ2. Computa-

tion of distances between shapes then reduces to simple kernel calculus which can
be performed efficiently for well-suited kernels either through fast Gauss transform
schemes as in [11] or through convolutions on linearly spaced grids as explained in
[6].

In summary, this succinct presentation was meant to stress two essential advan-
tages of currents in shape representation. The first one being its flexibility due
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Figure 1. Representation of curve and surface in Dirac current

to the vector space structure and the wide range of geometrical objects that are
comprehended without ever requiring any parametrization. The second important
point is the fact that computations on currents are made very efficient by the use
of kernels which makes them appropriate in various applications as simplification,
registration or template estimation. All these elements motivate an extension of
the framework of currents to incorporate functional shapes, which will be discussed
thoroughly in all the following.

2.2. Functional shapes and the limitations of currents. We now consider, as
in the previous section, a d-dimensional sub-manifold X of the n-dimensional vector
space E but in addition, we assume that functional data is attached to every points
of X through a function f defined on X and taking its values in a differentiable
manifold M , the signal space. What we call a functional shape is then a couple
(X, f) of such objects. The natural question that arises is this : can we model such
functional shapes in the framework of currents like purely geometrical shapes ?
In the following, we are discussing two possible methods to address this question
directly with usual currents and explain why both of them are not fully satisfying
in the perspective of applications to computational anatomy.

First attempts to include signals supported geometrically in the currents’ rep-
resentation were investigated in [6] with the idea of colored currents. This relies
basically on the fact already mentioned that the set of d-currents contains a wider
variety of objects than d-dimensional sub-manifolds like rectifiable sets or flat chains
(cf [10]). In particular, weighted sub-manifolds can be considered as currents in the
following very natural way : suppose that X is a sub-manifold of E of dimension
d and f : X → R is a weight or equivalently a real signal at each point of X such
that f is continuous, then we can associate to (X, f) a d-current in E :

T(X,f)(ω) =

∫
X

fω

Although this approach seems to be the most straightforward way to apply currents
to functional shapes since we are still defining a d-current in E, it’s quite obvious
that such a representation suffers from several important drawbacks. The first
thing is the difficulty to generalize colored currents for signals that are not simply
real-valued, particularly if the signal space is not a vector space (think for instance
of the case of a signal consisting of directions in the 3D space, where M is therefore
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the sphere S2). The second point arises when the previous equation is discretized
into Dirac currents, which leads to an expression of the form

∑
k=1..N f(xk)δξkxk . We

notice an ambiguity appearing between the signal and the volume element ξ since

for any r 6= 0, f(xk)δξkxk = rf(xk)δ
ξk/r
xk ; separating geometry from signal in the

discretized version appears as a fundamental difficulty. In addition, the energy of
Dirac terms are proportional to the value of the signal at the corresponding point
which induces an asymmetry between low and high-valued signals. In this setting,
areas having very small signals become negligible in terms of current, which is both
not justified in general and can affect drastically the matching of colored currents.
We show a simple illustration of this issue when matching two colored ellipsoids
with this approach in figure 2. Finally, we could also mention some additional
pitfalls resulting in that colored currents do not separate clearly geometry from
signal. Most problematic is the fact that there is no flexibility to treat signals at
different scale levels than geometry which can make the approach highly sensitive
to noise.

Figure 2. An example of matching between two ellipsoids pro-
vided by the classical LDDMM algorithm. On the left, the adap-
tation with the colored currents’ representation. Values of the
signals are two diffused stains both on the source ellipsoid (inside
surface) and the target one (exterior shaded surface). We display
in blue trajectories of the points. The points compounding to zero-
valued area of the signal in the source shape are not matched to
the corresponding points in the target surface. On the right, we
show what should be the expected result. It is obtained through
the approach of functional currents that shall be presented in the
next parts of the paper.

Another possible and interesting way to represent a functional shape by a cur-
rent is to view it as a shape in the product space E ×M . Somehow, it generalizes
the idea of seeing a 2D image as a 3D surface. However, at our level of generality,
it is not a completely straightforward process. If the signal function f is assumed
to be C1, the set G := {(p, f(p)) | p ∈ X} inherits a structure of d-dimensional
manifold of E ×M . With M a vector space, it results directly from the previ-
ous that G can be represented as a d-current in the product space, that is as an
element of Ωd0(E ×M). For a general signal manifold though, we would need to
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extend our definitions of currents to the manifold case, which could be done (cf [21])
but the definition of kernels on such spaces would then become a much more in-
volved issue in general compared to the vector space case. This difficulty set apart,
there still are some important elements to point out. The first one is the increase
of dimensionality of the approach because, while we are still considering manifold
of dimension d, the co-dimension is higher : the space of d-vectors characterizing

local geometry Λd(E ×M) is now of dimension
(
n+dim(M)

d

)
, with significant conse-

quences from a computational point of view. From a more theoretical angle, we see
that, in such an approach, geometrical support and signal play a symmetric role.
In this representation, the modelled topology is no more the one of the original
shape because we also take into account variations within the signal space. Wether
this is a strength or a weakness is not obvious a priori and would highly depend
on the kind of applications. What we can state is that this representation is not
robust to topological changes of the shape : in practice, the connectivity between
all points becomes crucial, what we illustrate on the simplest example of a plane
curve carrying a real signal in figure 3. In the field of computational anatomy, the
processing of data such as fiber bundles, where connections between points of the
fibers are not always reliable, this would be a clear drawback. We shall illustrate
these consequences from the point of view of diffeomorphic matching in the last
section of the paper.
To sum up this section, we have investigated two direct ways to see a functional

Figure 3. Product currents and topology. On the left, we show
a disconnected 2D curve with signal values 0 in blue and 1 in red
as well as the connected curve in dashed line. On the right hand
side are the corresponding curves in the 3-dimensional geometry ×
signal space. What we want to emphasize here is the fact that no
RKHS norm on product currents would provide a continuity of this
representation with respect to connectivity : the difference between
the two curves is the magenta dashed part which represents a pure
variation in the signal domain.

shape as a current. The colored currents’ setting, although being very close to the
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modelling of purely geometrical shapes, is to be discarded mainly because it mixes
geometry and signal in an inconsistent way. As for the second idea of immersing
the functional shape in a product space, we have explained its limits both from the
difficulty of the practical implementation and from the lack of robustness with re-
spect to topology of the geometrical support. These facts constitute our motivation
to redefine a proper class of mathematical objects that would preserve the interest
of currents while overcoming the previous drawbacks.

3. Definition and basic properties of functional currents

In this section, we propose an extension of the notion of currents to represent
functional shapes. The new mathematical objects we introduce, we call ’functional
currents’, are not usual currents strictly speaking, contrarily to the methods pre-
sented in section 2.2. They would rather derive from the very general concept of
double current introduced originally by De Rham in [21]. Here, we adapt it in a
different way to fit with the applications we aim at in computational anatomy.

3.1. Functional p-forms and functional currents. Like in the previous section,
let (X, f) be a functional shape, with X a d-dimensional sub-manifold of the n-
dimensional Euclidean space E and f a measurable application from X to a signal
space M . In our framework, M can be any Riemannian manifold. Most simple
examples are provided by surfaces with real signal data like activation maps on
cortex in fMRI imaging but the framework that we present here is made general
enough to incorporate signals from very different natures : vector fields, tensor
fields, grassmannians. We now define the space of functional currents again as the
dual of a space of continuous forms :

Definition 1. We call a functional p-form on (E,M) an element of the space
C0(E ×M,ΛpE∗) which will be denoted by Ωp0(E,M) hereafter. We consider the
uniform norm on Ωp0(E,M) defined by : ‖ω‖∞ = sup(x,m)∈E×M ‖ω(x,m)‖. A func-

tional p-current (or fcurrent in short) is defined as a continuous linear form on
Ωp0(E,M) for the uniform norm. The space of functional p-current will be there-
fore denoted Ωp0(E,M)′.

Just as one can establish a correspondence between shapes and currents, to any
functional shape we now associate a fcurrent.

Proposition 1. Let (X, f) be a functional shape, with X an oriented sub-manifold
of dimension d and of finite volume and f a measurable function from X to M .
For all ω ∈ Ωd0(E,M), x 7→ ω(x,f(x)) can be integrated along X. We set :

(4) C(X,f)(ω) :=

∫
X

ω(x,f(x)) .

Then C(X,f) ∈ Ωd0(E,M)′ and therefore (X, f) 7→ C(X,f) associates, to any func-
tional shape, a functional current.

To be more explicit, recall that the integral in (4) is simply defined through local
parametrization with a given partition of the unit of sub-manifold X. If F : U → E
is a parametrization of X with U an open subset of Rd, then

C(X,f)(ω) =

∫
(x1,..,xd)∈U

ω(F (x1,..,xd),f◦F (x1,..,xd))

(
∂F

∂x1
∧ ... ∧ ∂F

∂xd

)
dx1...dxd .
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Note also, although we did not state it explicitly, that the previous proposition could
include sub-manifolds with boundary in the exact same way since the boundary is
of zero Hausdorff measure on the sub-manifold. Of course, like for regular currents,
the previous correspondence between functional shapes and functional currents is
not surjective. For instance, a sum of functional currents of the form C(X,f) do
not generally derive from a functional shape. In the functional current framework,
Dirac masses are naturally generalized by elementary functional currents or Dirac

fcurrents δξ(x,m) for x ∈ X, m ∈ M and ξ ∈ ΛpE such that δξ(x,m)(ω) = ω(x,m)(ξ).

In the same way as explained in the previous part, one can give a discretized version
of functional currents associated to (X, f) when a mesh is defined on X. C(X,f) is
then approximated into a sum of punctual currents :

(5) C(X,f) ≈
∑

k=1..N

δξk(xk,mk)

In the particular case of a triangulated surface, the discretized version of the fcurrent
can be simply obtained as explained for classical currents by adding the interpolated
value of signal at each center point of triangles. From the previous equation, we
can observe that functional currents have a very simple interpretation. It consists
in attaching values of the signal f to the usual representation of X as a d-current.
At this stage, we could also point out an alternative way to define fcurrents by
considering them as tensor products of d-currents in E and 0-current (i.e. measure)
in M , following for instance [21].

3.2. Diffeomorphic transport of fcurrents. What about diffeomorphic trans-
port of functional shapes and currents ? This question cannot be addressed as
simply as for the classical current setting if we want to remain completely gen-
eral. The reason is that, depending on the nature of the signal defined on the
manifold, there is not a unique way a deformation can act on a functional shape.
In the most simple case where the signal values are not directly correlated to ge-
ometry (for instance an activation map on a cortical surface), the natural way to
deform a functional shape (X, f) by a diffeomorphism φ is to transport the geom-
etry of the shape with the values of the signal unchanged. Therefore, the image
of (X, f) would be (φ(X), f ◦ φ−1). But imagine now that f is a tangent vector
field on X. A diffeomorphism φ, by transporting the geometrical support also has
to act on the signal through its differential in order to have a tangent vector field
on the image shape. In this case, the image of (X, f) is (φ(X), g) where, for all
y ∈ φ(X), g(y) = dφ−1(y)φ(f ◦ φ−1(y)). In other cases, for instance a tensor field
defined on a manifold, the expression of the transport would differ again. In all
cases though, what we have is a left group action of diffeomorphisms of E on the
set of considered functional shapes.
Thus, to remain general, suppose that a certain class of functional shapes together
with such a group action are fixed, we will note φ.(X, f) the action of φ ∈ Diff(E)
on a functional shape (X, f). Then,

Definition 2. We call a deformation model on the space of functional currents an
action of the group of diffeomorphisms of E on Ωd0(E,M)′ which is such that for
any functional shape (X, f) and any diffeomorphism φ, if φ∗ stands for the action
on fcurrents, the following property holds :

(6) [φ∗C(X,f)](ω) = Cφ.(X,f)(ω)
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for all ω ∈ Ωd0(E,M).

Note the difference with (2) : the action of a diffeomorphism on usual currents is
always the simple push forward operation which is automatically compatible with
the transport of a shape. Here, it is necessary to adapt the definition of the action
on fcurrents to be compatible with a given action on functional shapes by satisfying
(6).

In practical applications, this is usually not a difficulty. In the first case men-
tioned above, the action of φ ∈ Diff(E) on a functional current C can be derived in
a very similar way to the case of usual currents :

(7)


φ∗C(ω)

.
= C(φ∗ω), ∀ω ∈ Ωd0(E,M)

where for all ∀x ∈ E, m ∈M, ξ = ξ1 ∧ ... ∧ ξp ∈ ΛpE

(φ∗ω)(x,m)(ξ)
.
= ω(φ(x),m)(dxφ(ξ1) ∧ ... ∧ dxφ(ξd)) .

It can be easily checked from the previous equations that for all functional shape
(X, f), we have φ∗C(X,f) = C(φ(X),f◦φ−1) as we expected under this model. Since
we do not want to focus this paper specifically on deformation, the examples of
matching that we will give in the last section are under the hypothesis of this model
of transport, which is the simplest and will lead to a convenient generalization
of matching algorithms on functional currents. We could go a step further and
introduce also a contrast change ψ 7→ ψ ◦f for ψ ∈ Diff(M) so that we end up with
a new action of Diff(E)×Diff(M) on Ωd0(E,M) defined by

(8) ((φ, ψ)∗ω)(x,m)(ξ)
.
= ω(φ(x),ψ(m))(dxφ(ξ1) ∧ ... ∧ dxφ(ξd))

and the corresponding action on fcurrent (φ, ψ)∗C(ω)
.
= C((φ, ψ)∗ω) given by du-

ality for which we easily check that

(9) (φ, ψ)∗(δ
ξ
x,m) = δ

dxφ(ξ1)∧...∧dxφ(ξd)
φ(x),ψ(m) .

Note that it is not significantly more difficult to express and implement the defor-
mation model on functional currents that corresponds to other types of action, as
for instance in the case of tangent vector signal we mentioned earlier.

4. A Hilbert space structure on functional currents

In this section, we address the fundamental question of comparing functional
currents through an appropriate metric. For this purpose, we adapt the ideas of
RKHS presented briefly for currents in the first part of the paper. This approach
allows to view functional currents as elements of a Hilbert space of functions, which
opens the way to various processing algorithms on functional shapes as will be
illustrated in the next section.

4.1. Kernels on fcurrent spaces. As we have seen for currents, the theory of
RKHS defines an inner product between currents through a certain kernel function
satisfying some regularity and boundary conditions. Following the idea that func-
tional p-currents can be considered as well as tensor product of p-currents on E and
0-currents on M, we can generically define a kernel on E ×M .

Proposition 2. Let Kg : E ×E → L(ΛpE) be a positive kernel on the geometrical
space E and Kf : M ×M → R a positive kernel on the signal space M . We assume
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that both kernels are continuous, bounded and vanishing at infinity. Then Kg ⊗Kf

defines a positive kernel from E × M on ΛpE whose corresponding reproducing
Hilbert space W is continuously embedded into Ωp0(E,M). Consequently, every
functional p-current belongs to W ′.

Proof. This relies essentially on classical properties of kernels. From the conditions
on both kernels, we know that to Kg and Kf correspond two RKHS Wg and Wf

that are respectively embedded into Ωp0(E) and Ω0
0(M) (cf [11]). It is a classical

result in RKHS theory that K := Kg ⊗ Kf defines a positive kernel. Moreover,
since Kf is real-valued, we have the following explicit expression of K:

K ((x1,m1), (x2,m2)) = Kf (m1,m2).Kg(x1, x2) .

To the kernel K corresponds a unique RKHS W that is the completion of the vector
space spanned by all the functions {Kf (.,m).Kg(., x)ξ} for x ∈ E, m ∈ M, ξ ∈
ΛpE. Since functions Kf (.,m) and Kg(., x) are both continuous and vanishing at
infinity from what we have said, it is also the case for Kf (.,m).Kg(., x)ξ so that
W is indeed embedded into Ωp0(E,M). There only remains to prove that we have
a continuous embedding, which reduces to dominate the uniform norm by ‖.‖W .

Let ω ∈W . For all (x,m) ∈ E ×M and ξ ∈ ΛpE such that |ξ| = 1, we have

(10) |ω(x,m)(ξ)| = |δξ(x,m)(ω)| .

Since W is a RKHS, all δξ(x,m) are continuous linear forms on W . In addition, Riesz

representation theorem provides an isometry KW : W ′ →W . Then :

〈δξ1(x1,m1), δ
ξ2
(x2,m2)〉W ′ = 〈KW (δξ1(x1,m1)),KW (δξ2(x2,m2))〉W

= 〈Kf (.,m1)Kg(., x1)ξ1,Kf (.,m2)Kg(., x2)ξ1〉W
= Kf (m1,m2).ξT2 Kg(x1, x2)ξ1(11)

Now, back to equation (10), we have :

|ω(x,m)(ξ)| ≤ ‖δξx,m‖W ′ ‖ω‖W

≤
√
Kf (m,m).ξTKg(x, x)ξ ‖ω‖W

Since we assume that m 7→ Kf (m,m) and x 7→ Kg(x, x) are bounded we deduce

that
√
Kf (m,m).ξTKg(x, x)ξ is bounded with respect to x, m and ξ with |ξ| = 1.

Hence, by taking the supremum in the previous equation, we finally get

‖ω‖∞ ≤ C‖ω‖W
which precisely means that the embedding is continuous. By duality, we get that
every functional current is an element of W ′. Note that the dual application is not
necessarily injective unless W is dense in Ωp0(E,M), which is the case in particular
if both Wg and Wf are respectively dense in Ωp0(E) and Ω0

0(M). �

In other words, a quite natural (but not unique) way to build kernels for func-
tional currents is to make the tensor product of kernels defined separately in the
geometrical domain (p-currents in E) and in the signal domain (0-currents in M).
As we see, everything eventually relies on the specification of kernels on E and M .

Kernels on vector spaces have been widely studied in the past and obviously
do not arise any additional difficulty in our approach compared to usual current
settings. Among others, classical examples of kernels on a vector space E taking
values in another vector space H are provided by radial scalar kernels defined for
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x, y ∈ E by K(x, y) = k(|x − y|).IdH where k is a function defined on R+ and
vanishing at infinity. This family of kernels is the only one that induces a RKHS
norm invariant through affine isometries. The most popular is the Gaussian kernel

defined by K(x, y) = exp
(
− |x−y|

2

σ2

)
IdH , σ being a scale parameter that can be

interpreted somehow as a range of interactions between points.
The definition of a kernel on a general manifold M is often a more involved issue

as we already mentioned in subsection 2.2. Generally, the procedure is reversed :
the kernel is defined through a compact operator on differential forms of M , which
can be diagonalized and hopefully provide a closed expression of the kernel on M (cf
[28]). The case of the two-dimensional sphere for instance is thoroughly treated in
[11]. However, it’s important to note that, in our setting of functional currents, this
issue is drastically simplified because we only need to define a real-valued kernel
on M . This is contrasting with the idea of product space currents of subsection
2.2, which requires the definition of kernels living in the exterior product of the
fiber bundle of M . For instance, if M is a sub-manifold of a certain vector space,
obtaining real-valued kernels on M becomes straightforward by restriction to M of
kernels defined on the ambient vector space.

4.2. Convergence and control results on the RKHS norm. We are now
going to explore a little more some properties of the RKHS norm on fcurrents and
show the theoretical benefits of our approach with respect to the original problem
raised by this article.

Suppose, under the same hypotheses as the previous section, that two kernels Kg

and Kf are given respectively on space E and manifold M , providing two RKHS
Wg and Wf . By a simple triangular inequality, we get for any x1, x2 ∈ E, any ξ1,
ξ2 ∈ ΛpE and any m1, m2 ∈M

(12) ‖δξ2(x2,m2) − δ
ξ1
(x1,m1)‖W ′ ≤ ‖δm1

‖W ′f ‖δ
ξ2
x2
− δξ1x1

‖W ′g + ‖δξ2x2
‖W ′g‖δm2

− δm1
‖W ′f .

Since both kernels Kf and Kg are assumed to be bounded as in Proposition 2,
‖δm1‖W ′f and ‖δξ2x2

‖W ′g are uniformly bounded so that eventually

‖δξ2(x2,m2) − δ
ξ1
(x1,m1)‖W ′ ≤ Cst (‖δξ2x2

− δξ1x1
‖W ′g + ‖δm2

− δm1
‖W ′f ) .

Therefore, the RKHS distance between punctual fcurrents is dominated both with
respect to the variation of their geometrical parts and of their functional values.
This is the general idea we will formulate in a more precise way with the two
following propositions. We denote by dM the geodesic distance induced on M
by its Riemannian structure. The next proposition examines the case where the
geometrical support is a fixed sub-manifold X and shows that the variation of the
W ′-norm is then dominated by the L1 norm on X.

Proposition 3. Let X be a d-dimensional sub-manifold of E of finite volume and
f1 : X →M and f2 : X →M two measurable functions defined on the sub-manifold
X taking value in M . We assume that Wf is continuously embedded into C1

0 (M,R).
Then, there exists a constant β such that :

‖C(X,f1) − C(X,f2)‖W ′ ≤ β
∫
X

dM (f1(x), f2(x))dσ(x)

where σ is the uniform measure on X.
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Proof. We recall the definition C(X,f) =
∫
X
ω(x,f(x)). We will first restrict the

proof to the case where X admits a parametrization given by a function G : U → E
where U is an open subset of Rd. The general result follows by the use of an
appropriate partition of the unit on X. Denoting ξ(u)

.
= ∂G

∂u1
(u) ∧ .. ∧ ∂G

∂ud
(u) for

u = (u1, .., ud) ∈ U , we get

C(X,f)(ω) =

∫
u∈U

ω(G(u),f◦G(u))(ξ(u))du

Now, for g1
.
= f1 ◦G and g2

.
= f2 ◦G, we have by triangular inequality on ‖.‖W ′ :

(13) ‖C(X,f1) − C(X,f2)‖W ′ ≤
∫
U

‖δξ(u)
(G(u),g1(u)) − δ

ξ(u)
(G(u),g2(u))‖W ′du .

From (12), ‖δξ(u)
(G(u),g1(u)) − δ

ξ(u)
(G(u),g2(u))‖W ′ ≤ ‖δ

ξ(u)
G(u)‖W ′g‖δg2(u) − δg1(u)‖W ′f . Now,

for any m1, m2 ∈M and h ∈Wf we have

|(δm1
− δm2

)(h)| = |h(m1)− h(m2)|
≤ ‖Dh‖∞dM (m1,m2)

≤ Cst ‖h‖Wf
dM (m1,m2)

the last inequality resulting from the continuous embedding Wf ↪→ C1
0 (M,R).

Therefore we get

‖δg2(u) − δg1(u)‖W ′f ≤ Cst dM (g1(u), g2(u)) .

Moreover, since we assume that the kernel Kg is bounded, we also have ‖δξ(u)
G(u)‖W ′g ≤

Cst |ξ(u)|. Back to equation (13), we get from the previous derivations the existence
of a constant β > 0 such that :

‖C(X,f1) − C(X,f2)‖W ′ ≤ β
∫
U

dM (g1(u), g2(u))|ξ(u)|du

which precisely proves the stated result. �

A straightforward consequence of Proposition 3 and dominated convergence the-
orem is that if fn is a sequence of function on X that converges pointwisely to a
function f , then C(X,fn) → C(X,f). In other words, pointwise convergence of
signal implies convergence in terms of fcurrents.

Following the same kind of reasoning we eventually give a local bound of the
RKHS distance between a functional shape and the same shape deformed through
small diffeomorphisms both in geometry and signal. As it is now classical, we
consider deformations modelled as flows between 0 and 1 of differential equations
given through time varying vector fields. In appendix A, we remind the basic
definitions about this modelling and a few useful results for the following. Let
u(t, x) (resp. v(t,m)) be a smooth time dependent vector fields on the geometrical
space E (resp. on the signal space M) and let φ (resp. ψ) the solution at time 1
of the flow of the ODE y′ = u(t, y) (resp. y′ = v(t, y)). On these spaces of vector
fields, we define the norms :

‖u‖χ1 =

∫ 1

0

|u(t, .)|1,∞dt, ‖v‖χ0 =

∫ 1

0

|v(t, .)|0,∞dt

where |u(t, .)|1,∞ = supx |u(t, x)|+
∑
i supx | ∂u∂xi (t, x)| and ‖v(t, .)‖0,∞ = supm |v(t,m)|.
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Proposition 4. Let X be a sub-manifold of E of finite volume and f : X →M a
measurable function. Assume that Wg and Wf are continuously embedded respec-
tively into C1

0 (E,ΛdE∗) and C1
0 (M,R). There exists a universal constant γ > 0

such that, if ‖u‖χ1 and ‖v‖χ0 are sufficiently small (which means that deformations
are ’close’ to identity), then :

‖C(X,f) − C(φ(X),ψ◦f◦φ−1)‖W ′ ≤ γVol(X)
(
‖u‖χ1 + ‖v‖χ0

)
Proof. The full proof of proposition 4 relies mostly on a few controls which are
summed up in appendix A. Given again a local parametrization of X, G : U → X,
then, similarly to the previous proposition and using same notations, we have :

(14) ‖C(X,f) −C(φ(X),ψ◦f◦φ−1)‖W ′ ≤
∫
U

‖δξ(u)
(G(u),f◦G(u)) − δ

ξ̃(u)
(φ◦G(u),ψ◦f◦G(u))‖W ′du

where for the volume element ξ(u) = ξ1(u) ∧ ... ∧ ξd(u), ξ̃(u) is the transported

volume element by φ equal to ξ̃(u) = dφx(ξ1(u)) ∧ ... ∧ dφx(ξd(u)). From (12) we
get

‖δξ(x)
(x,f(x)) − δ

ξ̃(x)
(φ(x),ψ◦f(x))‖W ′ ≤ ‖δψ◦f(x)‖W ′f ‖δ

ξ̃(x)
φ(x) − δ

ξ(x)
x ‖W ′g

+ ‖δξ(x)
x ‖W ′g‖δψ◦f(x) − δf(x)‖W ′f .

and using ‖δξ(x)
x ‖W ′g ≤ Cst |ξ(x)| and ‖δψ◦f(x) − δf(x)‖W ′f ≤ Cst dM (ψ ◦ f(x), f(x))

we get

‖δξ(x)
x ‖W ′g‖δψ◦f(x) − δf(x)‖W ′f ≤ Cst |ξ(x)|dM (ψ ◦ f(x), f(x))

≤ Cst |ξ(x)|‖v‖χ0

(15)

In a similar way, we know that ‖δψ◦f(x)‖W ′f ≤ Cst. Moreover :

‖δξ(x)
x − δξ̃(x)

φ(x)‖W ′g ≤ Cst (|ξ(x)|‖Id− φ‖∞ + |ξ̃(x)− ξ(x)|)
≤ Cst |ξ(x)|‖u‖χ1

the last inequality being obtained thanks to theorem 3 and corollary 1 of appendix
A with s = 0 and t = 1. This leads to :

(16) ‖δψ◦f(x)‖W ′f ‖δ
ξ(x)
x − δξ̃(x)

φ(x)‖W ′g ≤ Cst |ξ(x)|‖u‖1,∞ .

Plugging (15) and (16) in (14), we finally get :

‖C(X,f) − C(φ(X),ψ◦f◦φ−1)‖W ′ ≤ Cst (‖u‖χ1 + ‖v‖χ0)

∫
U

|ξ(u)|du

which concludes the proof since
∫
U
|ξ(u)|du = Vol(X). �

This property shows that the RKHS norm is continuous with respect to de-
formations of the functional shape (both in its geometry and its signal). More
specifically, it is not hard to see that C(φ(X),ψ◦f◦φ−1) = (φ, ψ)∗C(X,f) for the action
given by (8) and (9) and to extend the proof of the previous proposition to a more
general situation of a fcurrent C ∈ W ′ having finite “mass norm” M(C) where
M(C)

.
= supω∈W,‖ω‖∞≤1 C(ω) is the proper extension of the previous finite volume

condition. Then we get

(17) ‖(φ, ψ)∗C − C‖W ′ ≤ γM(C)
(
‖u‖χ1 + ‖v‖χ0

)
.

where γ is a universal constant.
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Figure 4. Comparison of the fcurrent’s norm and the Lp norm
on a fixed geometrical support : example of crenellations on the
unit circle.

This result also provides an answer to wether there is a resversed domination in
Proposition 3 for two functional shapes that have the same geometrical support.
Indeed, consider a particular case where ψ = Id and φ is a small deformation that
leaves X globally invariant (φ(X) = X). We wish to compare the initial functional
shape (X, f) with the deformed one (φ(X), f ◦φ−1) = (X, f ◦φ−1). By proposition
4, we know that, for any function f , the fcurrent’s distance remains small if the
deformation φ is small. It is no longer true if we compute instead

∫
X
|f − f ◦φ−1|p,

the Lp distance on X (0 < p ≤ ∞). This is easily seen if we choose for X the unit
circle S1 and consider crenellated signals as in figure 4. Introducing the operator
τdθ that acts on functional shapes by rotation of an angle dθ, we see indeed that :

sup
f∈Lp (S1),‖f‖Lp≤1

∫
S1
|f − f ◦ τ−1

dθ |
p = 1

whereas, according to Proposition 4

sup
f∈Lp (S1),‖f‖Lp≤1

‖C(X,f) − C(X,f◦τ−1
dθ )‖W ′ = O(dθ) .

In conclusion, this gives an answer to the previous question : W ′ norm and Lp norm
on a fixed geometrical support are not equivalent in general. Again, such a fact
speaks in favor of the use of RKHS norms on fcurrents : somehow, the approach
we have presented allows a coherent collaboration between signal and geometry to
define a proper attachment term for functional shapes that shall be used in section
5.

5. Processing functional shapes with fcurrents : Two examples

We would like to illustrate now how the concept of functional currents introduced
before offers a genuine solution to the simultaneous processing of the geometric and
signal information of any functional shape. We have explained how functional cur-
rents can be equipped with a Hilbertian norm mixing geometrical and functional
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content of functional shapes and how this norm has nice properties with respect
to geometrical and functional perturbations. It is more or less clear that the em-
bedding in this convenient Hilbert setting is opening to way to various processing
algorithms that will be developed in a near future. Since the purpose of this pa-
per is to stay focused on the theoretical exposition of the fcurrents, you will not
try here to develop a full range of applications but we will present briefly two il-
lustrative applications in order to shed a light on the potential of the developed
framework. The first application illustrates the full potential of the Hilbertian
structure with the design of redundancy reduction or compression algorithms for
functional shapes representations through matching pursuit schemes on functional
currents. The second one, closer to the core engine of computational anatomy, is
the design of large deformation matching algorithm for the simultaneous geometric
and functional registration of functional shapes under diffeomorphic transport.

5.1. A compression algorithm for functional current representations. Let
us start with the issue of the redundancy of fcurrent representations. If we con-
sider for instance a segment in the 2D space with constant signal, the discretization
in punctual fcurrents given by (5) will provide a representation with a number
of elements that corresponds to the initial sampling of the curve. Generally, this
representation could be clearly reduced since, for such a simple functional shape,
only a few terms should capture most of the shape. However, the quality of the
approximation needs to be quantified in a meaningful way, especially when the
functional part is also involved, through an appropriate norm for which we have
a natural candidate given by the Hilbert structure. This issue of redundancy re-
duction or compression is important for instance when making means of currents
because without further treatment, the number of Dirac currents involved in the
representation of the mean would increase dramatically. This is even more impor-
tant when considering higher order statistics for the estimation of noise or texture
models around a mean functional shape possibly coupled with a deformation model
learned from a set of inexact geodesic matchings, as provided for instance by the
matching algorithm provided in subsection 5.2. In the following, we only provide a
general overview of the algorithm and few numerical results to show the functional
current behaviours. The details of numerical optimization that may deserve a more
in depth exposition are out of the scope of the present paper.

As we have said, the problem of redundancy reduction or compression is deeply
simplified thanks to the Hilbert space structure that has been defined on functional
currents in the previous section. Indeed, classical matching-pursuit algorithms in
general Hilbert spaces have already been studied by Mallat and Zhang in [16] and
later adapted to currents in [8]. We can proceed in a similar way for functional

currents. Consider again a discretized fcurrent C =
∑
i=1..N δ

ξi
(xi,mi)

∈ W ′. N,

the number of momenta, is automatically given by the mesh on the sub manifold
(point sampling for curves, triangulation for surfaces,...). This sub manifold might
have some very regular regions with low geometrical and functional variations, in
which results a very redundant representation by fcurrent due to the fact that many
adjacent nodes present the same local geometry and signal. The goal of matching-
pursuit is to find a more appropriate and reduced representation of C in elementary
functional currents. Given a certain threshold ε > 0, we want to find Πn(C) such
that C = Πn(C) + Rn(C) and ‖Rn(C)‖W ′ 6 ε. Rn(C) will be called the residue
of the approximation. Somehow, this is linked to the problem of finding the best
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projection of C on a subspace of W ′. This problem is however too much time-
consuming computationally for usual applications. Instead, matching pursuit is a
greedy algorithm that constructs a family of approximating vectors step by step.
The result is a suboptimal fcurrent that approximates the functional current C
with a residue whose energy is below threshold. The algorithm basically proceeds
as follows. We need to specify a ’dictionary’ D of elements in W ′. In our case, we

typically consider the set of all elementary functional currents {δξ(x,m)} with ξ a unit

vector in ΛdE. The first step of matching pursuit algorithm is to find δ
ξ′1
(x′1,m

′
1) ∈ D

that is best correlated to C. In other words, we try to maximise, with respect to
x,m, ξ, the quantity :

(18) 〈C, δξ(x,m)〉W ′ = ξT

(
N∑
i=1

K((x,m), (xi,mi))ξi

)
Since ξ is taken among unit vectors, the problem is strictly equivalent to maximize
‖
∑
i=1..N K((x,m), (xi,mi))ξi‖ = ‖γ(x,m)‖ with respect to (x,m) and take ξ as

the unit vector of same direction. We get a first approximation of C :

C = Π1(C) +R1(C) .

The algorithm then applies the same procedure to the residueR1(C), which provides

a second vector δ
ξ′2
(x′2,m

′
2) ∈ D, and a residue R2(C). The algorithm is stopped when

the RKHS norm of the residue decreases below the given threshold ε.
In most cases, it appears that the compression is better with the orthogonal

version of the previous scheme, in which the family of vectors is orthonormalized
at each step, in order to impose the projection and the residue to be orthogonal
in W ′. The classical algorithm is based on a Gram-Schmidt orthonormalization at
each step. In our case, it’s possible to obtain a similar result in a more optimal way
by keeping the values of (x′i,m

′
i) found during previous steps and simply modify the

vectors ξ′i. This is done by imposing the following orthogonality condition. Let’s
call (ek) the canonical basis of the vector space ΛdE. If C = Πn(C) + Rn(C) and

Πn(C) =
∑
i=1..n δ

αni
(x′i,m

′
i)

, we will add the orthogonality constraint :

δek(x′i,m
′
i)
⊥Rn(C)⇐⇒ 〈C, δek(x′i,m

′
i)
〉W∗ = 〈Πn(C), δek(x′i,m

′
i)
〉W∗

for all basis vectors ek and for all i ∈ {1, .., n}. It is then straightforward to
check that these conditions are strictly equivalent to the following system of linear
equations to find the αni :

(19) ∀i ∈ {1, .., n},
n∑
j=1

(
K((x′i,m

′
i), (x

′
j ,m

′
j))α

n
j

)
k

= γ(x′i,m
′
i)k

We could show that the norm of the residue Rn(C) monotonically decreases to zero
as n → ∞. Hence the algorithm converges and eventually when the residue goes
below the given threshold at a certain step n, we obtain a compressed representation
of C with n orthogonal dirac fcurrents (with generally n � N , as we shall see on
the coming examples). At each step, the time-consuming part of the algorithm is
mainly the computation of sums of kernels, which has quadratic complexity with
respect to the number of Diracs of the original current but can be speeded up
tremendously by making computations on a fixed grid with FFT, as introduced for
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currents in [6]. The same kind of numerical trick can be performed with fcurrents
but we will not elaborate on that in this paper.

Here are now a few illustrative examples for real valued data on curves or sur-
faces. We will always consider kernels on fcurrents that are the tensor product of a
Gaussian kernel in R3 of scale parameter λg with a real Gaussian kernel in the signal
space of scale parameter λf . In figure 5 and 6, we emphasize the influence of both
kernel sizes on the compression factor as well as on the precision of the functional
values of the compressed shape. The bigger the parameter λg, the coarser the scale
of representation is and fewer punctual fcurrents are therefore needed to compress
shapes but more smaller features are lost. In figure 7, we focus more precisely
on the compression’s behaviour when computing matching-pursuit on a simulated
fiber bundle of 2D curves carrying different signals. The scale λg is the same for
both figures but we show the results of matching-pursuit for two radically different
values of λf . In both cases, matching pursuit provides an accurate approximation
of the mean (accordingly to the kernel norm) with a very limited number of Diracs
compared to the original sampling. However, note the important influence of λf .
Taking a big value for this parameter means that the matching-pursuit will average
values of the signals and provide a representation essentially with Dirac fcurrents
having values for their signal parts close to the average (left figure) whereas for
a smaller λf , the algorithm will only average the diracs that have close values of
signal (right figure).

In conclusion, these first examples of functional shape processing were meant
to highlight that the combination of the fcurrent’s representation with the use of
RKHS metrics provides an easy solution to address the issue of redundancy and
compression. The method provides important compression factors and enables scale
analysis on geometry and signal through the kernel parameters λg and λf .
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λg = 0.04, λf = 0.4, 47 Diracs λg = 0.02, λf = 0.4, 170 Diracs λg = 0.01, λf = 0.2, 565 Diracs

λg = 0.04, λf = 0.2, 57 Diracs λg = 0.02, λf = 0.1, 161 Diracs λg = 0.01, λf = 0.1, 571 Diracs

Figure 5. Matching pursuit on a “painted” bunny with dif-
ferent parameters λg and λf . Geometrically, the surface has
0.16 × 0.22 × 0.12 extension in the 3D space and the signal goes
from value zero (blue) to one (red). The original sampling of the
fcurrent representation has 69451 Diracs and we choose a stopping
criterion for the algorithm of ε = 5%. The resulting Dirac fcurrents

δξk(xk,mk) are here represented as colored vectors accordingly to the

functional values mk. Vectors are all of same length covering an
area proportional to the norm of ξk. Notice that the sampling in-
creases as λg is smaller while the vector’s colors are more accurate
when λf is smaller.

λg = 0.04, λf = 0.4 λg = 0.01, λf = 0.1

Figure 6. Close up on two of the previous results.
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Figure 7. Matching pursuit on a 2D fiber bundle, each fiber car-
rying one value of signal represented by the color. On top, the
initial object consisting of 300 fibers. Below, we show two results
of matching-pursuit with the same λg but two different values for
λf : λf = 200 for the left figure, λf = 20 for the right one.

5.2. A large deformation matching algorithm for functional shapes. As a
second illustrative example, we would like to briefly highlight the potentials of fcur-
rent representations in the context of computational anatomy and more generally
in the context of shape spaces. It is clear that many important anatomical mani-
folds are coming with interesting data lying on it (for instance cortical thickness in
anatomical MRI or activation maps in fMRI scans among many possibilities) and
are perfect examples of functional shapes as defined in this paper. The statistical
analysis of a population of such functional shapes is however a real challenge since
the relevant information in a functional shape may be buried in two sources : the
pure geometrical shape defined by the manifold itself and the signal information
spread on the support. However the geometrical and functional parts are more
likely intertwined with each other.

When only pure geometrical shapes are considered, the concept of shape space
equipped with a Riemannian metric offers proper tools for the local analysis of a
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population of shapes seen as a distribution of points in a shape space. In par-
ticular, the use of Riemannian exponential map around a template conveys an
efficient linearization of the shape space to describe the differences between shapes.
However, observed shapes are contaminated by many errors coming from various
pre-processing pipelines driving the extraction of shapes from raw data and the
shape space is not sufficient to accommodate any observed shape. Moreover, and
more fundamentally, shapes in a shape space are ideal exemplars of real shapes with
controlled complexity to address properly estimation issues from a limited sample.
Consequently a discrepancy measure or a noise model is needed to link ideal shapes
in shape space with observed shapes. A coherent framework is provided by the
current framework : indeed observed shapes can be represented as a vector in a
Hilbert space of currents which is also embedding a Riemannian shape space M
of ideal shapes : M ↪→ W ′ so that a population of observed shapes (Si) can be
represented as a sum Si = mi + ri where mi ∈ M and the residual noise ri ∈ W ′.
Introducing a template m0 and using the linearization provided around m0 by the
Riemannian exponential map Expm0

we can write for any observed shape S:

(20) S = Expm0
(u) + r

where (u, r) ∈ Tm0M × W ′. Note that the (u, r) are lying in a vector spaces
and t 7→ mt

.
= Expm0

(tu) is a geodesic on M. Introducing the metric ‖ ‖m0 at
m0 and the metric ‖ ‖W ′ on W ′, we can estimate an optimal decomposition (20)
(u(S), r(S)) of an observed shape S by the minimization of ‖u‖2m0

+ ‖r‖2W ′ .
When pure geometrical shapes are no longer involved but functional shapes in-

stead, the previous setting breaks down with usual currents but is still valid if W ′

is replaced by a RKHS space of fcurrents. The space M itself can be defined as
M = { g · m0 | g ∈ G} i.e. the orbit of a template m0 under the action of a
group of deformations G. The diffeomorphic transport discussed in subsection 3.2
offers several examples of such action. We will consider the simple situation of
functional shapes with real valued signals (E = Rd, M = R) where the action
is given by (7) even if more complex actions as defined by (8) and (9) could be
used. In this setting, the Riemannian structure on M is inherited from the opti-

misation of the kinetic energy
∫ 1

0
‖vt‖2V dt on a time dependant Eulerian velocity

fields (t, x) 7→ v(t, x) of the trajectory t 7→ φt ·m0 where φt is the flow of the ODE
y′ = v(t, y) starting from the identity. The overall framework has been popularized
as the large deformation diffeomorphic mapping setting (LDDMM). The space V
is a RKHS space of vector fields, here given by an isotropic Gaussian kernel, gen-
erating a right invariant distance on the group G of diffeomorphisms generated by
flows of kinetic energy. This induces, by Riemannian submersion, a Riemannian
structure on M (see [19, 26] for a more extended presentation of this geometrical
setting). In particular, if m0 = C(X,f) with X is a smooth manifold with finite
volume or if m0 = C is a more general element of W ′ such that M(C) < ∞ (for
instance a countable family of (Xi, fi)’s with

∑
vol(Xi) <∞) then the continuity

result given by Proposition 4 or (17) gives the continuous embedding M ↪→W ′.
Obviously the RKHS norm plays the role of an attachment term and could be

coupled with other matching approaches (even if we think that the previous setting
is particularly attractive for further statistical studies). The reader not familiar
with the above geodesic setting could replace the mapping u 7→ m1(u) = Expm0

(u)
by any other mapping u 7→ m1(u).
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Figure 8. Example of registration of two functional curves (top
left) with binary signal (blue is zero and red is one). On top
right, we show the classical matching with currents on the purely
geometrical curves. On bottom left, the same curves are matched
with our extension of LDDMM to functional currents. In both
cases, the deformed curve fits closely to the target one but note
the difference of the deformation field for the functional current’s
approach. Finally, on the right, we show the result of matching
we obtain again with fcurrents’ LDDMM but with a big value of
λf compared to the signal, in which case the matching is nearly
similar to the current matching.

With attachment distances provided by the RKHS norms on fcurrents, it is then
possible to extend LDDMM algorithm to the registration of functional shapes.
Leaving the technical details of implementation to a future paper, we just present
some results of the method on simple examples. As we can expect, the resulting
matching is driven both by the geometry of the shapes and by the functional values
they carry accordingly to the scales of both kernels, which we first show on the
example of figure 8. If we compare it now to the colored currents of section 2.2, we
see that since functional currents clearly separate signal and geometry, we no longer
have the same drawbacks : in the colored surfaces of figure 2, we have shown on the
right the matching result with the functional currents’ approach. In addition, the
functional current representation is totally robust both to punctual outlying signal
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values and to missing connections between points, which is clear from the definition
of the RKHS norm, because geometrically negligible subsets of the shape have zero
norm. It was not the case for instance with the product current idea (cf 2.2) since
variations of signal also carry non-zero norm. This has important consequences
when trying to match curves with missing connections as we show on the example
of figure 9. In our sense, it makes functional currents more fitted to the treatment
of fiber bundles carrying signal, like the example given in figure 10.

A second important thing to point out is that having a norm defined by the
tensor product of two kernels Kg and Kf with two independent scales provides a
total flexibility for the matching, geometrically and functionally. The choice of a
bigger parameter λf for instance allows the matching of signal values to be accurate
only at a bigger scale, hence our method could still achieve matching under noisy
or imprecise signals on shapes. The counterpart is of course the presence of an
additional parameter that must be adapted to the data, based upon an a priori
on the reliability of the signals we want to match. Multi-scale approaches can also
be built by adding kernel at different scales in the spirit of [22] or [24]. But still,
functional currents encompass usual currents’ approach in the sense that for the
limit case λf → ∞, matching with fcurrents will reduce to a classical matching of
purely geometrical parts of the data (cf bottom left figure 8).

Figure 9. LDDMM matching of two planar curves with discon-
tinuous signals and topological disconnections. Each curve has two
points of functional discontinuity, one of them being also a discon-
nection of the geometrical support (point b on the source and b’
on the target). On the right figure, the matching is performed by
representing the colored curve as a current in the product space
R2×R as explained in section 2.2. On the left, with the functional
currents’ representation. We see that the resulting deformation is
much perturbed by the disconnections in the case of product cur-
rents : the algorithm intends to match connected part of the source
shape on a connected part of the target shape although it leads to
a very unnatural matching.
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Functional current matching Source and target Current matching

Figure 10. A last example of matching on the case of a fiber
bundle with signal. On the center figure, the source and target
functional shapes. On the left, the resulting matching with the de-
formed shape and the deformation grid for the functional currents’
setting. On the right, the result obtained by matching with cur-
rents. Note that even if the geometrical shapes are well matched
in both cases, the two deformations are not the same. Functional
currents elongate the dark blue part to fit with the target shape’s
colors whereas currents, by not taking signal into account, shrinks
it.

6. Conclusion and outlook

We have presented in this paper a way to formally generalize the notion of cur-
rents in the purpose of integrating functional shapes into a coherent and robust
representation. Functional currents provide a framework to model geometrically-
supported signals of nearly any nature and regularity while preserving the interest
of the current’s approach for computational anatomy. The second main point of the
study is the definition of an appropriate norm. The definition of a RKHS structure
provides a distance between functional shapes that enjoys worthy control proper-
ties as stated in section 4.2. At the same time, the resulting Hilbert structure on
fcurrents opens the way to a very wide class of applications. Although numerical
issues that appear when computing with currents were not detailed in this paper,
we have presented two examples of processing algorithms for functional shapes : a
matching pursuit scheme to address fcurrents’ compression and averaging as well
as an adaptation of LDDMM algorithm for diffeomorphic registration of two func-
tional shapes. Examples were provided essentially in the simplest cases of curves
or surfaces with real-valued signal but same methods could easily apply to different
kind of manifold, signal and deformation models.
To sum up, the article has essentially the objective of setting a path to extend
the scope of traditional computational anatomy to these kind of data structures
we called functional shapes. This might constitute a serious possibility to improve
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registration and statistical estimation of deformable templates, which constitutes
the future step of our work. In the case of brain anatomy for instance, by taking
into account the additional information on the cortical surfaces provided by fMRI
maps or estimations of cortical thickness. And last but not least, let us insist again
on the point that the RKHS distances we have derived between functional shapes
enable joint comparison of geometry and function without the usual curse of requir-
ing a point to point correspondence between shapes or common coordinate systems,
which opens interesting possibilities with respect to statistics on functional shapes.
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Appendix A. Deformations’ modelling in the LDDMM framework

In this appendix, we remind a few intermediate results which are necessary for
the full proof of proposition 4. Most of them refer to deformations’ modelling and
can be found either in [11] or [27] (chap. 12).

Using notations of [27], for p ∈ N, let Cp0 (Rn,Rn) be the Banach space of p-times
continuously differentiable vector fields v on Rn such that v, dv, .., dpv vanish at
infinity, which is equipped with the norm |v|p,∞ =

∑p
i=1 |div|∞.

Now, let χp be the set of integrable function from the segment [0, 1] into Cp0 (Rn,Rn).
Any element of χp is a time-varying vector field we will denote v(t, .), t ∈ [0, 1]. On
χp we define the norm :

‖v‖χp =

∫ 1

0

|v(t, .)|p,∞dt

Note that we have χp ⊂ χp−1 ⊂ ... ⊂ χ0 and that if v ∈ χp, ‖v‖χ0 ≤ ... ≤ ‖v‖χp .

For any v ∈ χ1, we consider the differential equation dy
dt = v(t, y) with initial

condition y(s) = x ∈ Rn at time s ∈ [0, 1[. We have :

Theorem 1. For all x ∈ Rn and s ∈ [0, 1[, there exists a unique solution on [0, 1]

of the differential equation dy
dt = v(t, y) such that y(s) = x. We denote by φvs,t(x)

the value at time t of this solution. (t, x) 7→ φvs,t(x) defined on [0, 1]× Rn is called
the flow of the differential equation.

In other words, the flow satisfies the following integral equation :

(21) φvs,t(x) = x+

∫ t

s

v(r, φvs,r(x))dr

We then have :

Theorem 2. For all v ∈ χ1 and all s, t ∈ [0, 1], φvs,t is a C1-diffeomorphism of Rn.
In the special case where v = 0, φvs,t is the identity application.

From equation 21, using Gronwall inequality, it is easy to show that :

Theorem 3. For all R > 0 there is a constant C(R) > 0 such that, for all v ∈ χ1

with ‖v‖χ1 6 R :

‖φvs,t − Id‖∞ 6 C(R).‖v‖χ0 6 C(R).‖v‖χ1
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In a similar way, the same kind of control can be obtained for the differential of
the flow as stated below :

Theorem 4. For all v ∈ χ1 and s, t ∈ [0, 1], φvs,t is a C1 function whose differential
satisfies the integral equation :

dxφ
v
s,t = Id+

∫ t

s

dxv(r, φvs,r(x))dr

Theorem 5. For all R > 0 there is a constant C(R) > 0 such that, for all v ∈ χ1

with ‖v‖χ1 6 R :
‖dφvs,t − Id‖∞ 6 C(R).‖v‖χ1

This last result, together with the multilinearity of exterior product and jacobian,
leads to the following corollary :

Corollary 1. For ‖v‖χ1 small enough, there exists constants α > 0 and β > 0
such that for all x ∈ E :

|Jacx(φvs,t)− 1| ≤ α‖v‖χ1

‖dxφvs,t(ξ1) ∧ ... ∧ dxφvs,t(ξd)− ξ1 ∧ ... ∧ ξd‖ ≤ β‖v‖χ1 .‖ξ1 ∧ ... ∧ ξd‖
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